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Abstract

The purpose of this work is to present the Multi-Marginal Optimal Partial
Transport problem, by modelling a problem arising from engineering. In the
first section, we give a short overview on the Optimal Transport, Partial
Transport problems and we introduce the Multi-Marginal problem with some
existence and duality results. While in the second section we present the
Multi-Marginal Partial problem, we give few existence and duality results
and we prove a modulus of continuity result for the cost function. The last
section is devoted to the notion of entropic regularization of optimal transport
problems. We prove a Γ−convergence result for the regularized problem for a
fixed regularization parameter and a discretization parameter tending to zero.
Finally, we present some algorithms that are used for solving OT problems
with some numerical results.
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1 Notation
• The spaces in use X, Y,Xi are either compact spaces or the Euclidean space

Rd.

• C(X), Cb(X) are the spaces of continuous and bounded continuous functions
on X.

• ‖.‖ stands for the Euclidean norm on Rd, i.e, ‖x‖2 = ∑d
i=1 |xi|2 for x ∈ Rd.

• M(X) and P(X) denote respectively the space of measures and probability
measures on X.

• For µ ∈ P(X) and ν ∈ P(Y ) we have

Γ (µ, ν) = {γ ∈ P(X × Y ), (πX)]γ = µ, (πY )]γ = ν}

Γ≤m(µ, ν) = {γ ∈M+(X × Y ), (πX)]γ ≤ µ, (πY )]γ ≤ ν, γ(X × Y ) = m.}

where m ∈ (0, 1) and πX , πY are the canonical projections.

• For φ ∈ Cb(X), ψ ∈ Cb(Y ), φ⊕ ψ denotes φ(x) + ψ(y).

• 1 = (1, · · · , 1)† is the unit vector of Rd.

• δx is the Dirac measure at a point x.

• For φ ∈ Cb(X) and µ ∈ P(X), < φ | µ >=
∫
X φ(x)dµ(x).

• µ� ν: µ is absolutely continuous with respect to ν.

• µn ⇀ µ means that the sequence of probability measures µn converges to µ in
duality with Cb.
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2 Introduction
Multimarginal optimal transport has began to attract considerable attention duo
to its applications in a variety of domains such as economics, with for example, the
matching team problem [11], and in physics, with density functional theory [8, 13].
This problem, which is considered as a generalization of the Monge-Kantorovich
problem, was generalized in turn to the Multimarginal Optimal Partial Transport
Problem by linking it with the so-called Barycentre problem proposed in [1]. Our
work on the MMOPT is motivated by modelling a real life problem arising from
engineering, namely form the operating process of nuclear plants.

A nuclear power plant produces heat energy form atoms rather than burning
coal, or other fuel. The produced heat is used to make steam turbines connected to
generators which produce electricity for example. Uranium fuel is loaded up into
the reactor. In the core of the reactor, the atoms split apart and release heat energy
producing neutrons. Control roads made of materials such as cadmium & boron
can be raised of lowered into the reactor to soak up neutrons and slow down or
speed up the chain reaction. Water is pumped through the reactor to collect the
heat produced by the reaction. It circulates in a closed loop linking the reactor with
a heat exchanger, which is a device allowing heat to move form a fluid to another
avoiding any mixture or contact between the two fluids. More precisely, the water
from the reactor gives its energy to cooler water circulating in another closed loop,
transforming it into steam. Since the two loops are unconnected, the contaminated
water with radioactivity is kept safely contained in one place and well away from most
of the equipment. The temperature of the water which is released in the environment
is higher than the temperature of the incoming water. Electricity companies have
developed software which are able to estimate this temperature as a function of a few
parameters of the plant: the temperature of the cool water y1 ∈ R, its debit y2 ∈ R,
the radioactivity level in the primary circuit y3 ∈ R, the steam pressure y4 ∈ R, the
turbine inlet temperature y5 ∈ R and so on. Given these parameters, the software
outputs an estimation of the temperature of the released water b(y1, . . . , yN). In
order to avoid harming the ecosystem, one wishes to guarantee that these output
temperature will never (or very rarely) become too high.

Figure 1: Nuclear power station using pressurised water reactor

If we know the law of the parameters y1, . . . , yN , described by a probability
distribution γ ∈ P(RN), we can compute the law of the output temperatures
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by taking the pushforward under b, denoted b]γ ∈ P(R). We denote by Fγ the
cumulative distribution function of b]γ defined by Fγ(x) = b]γ((−∞, x]). If we
are given a percentage m ∈ (0, 1), the generalized inverse of Fγ at level m is
the minimum temperature x such that Fγ(x) ≥ m, or equivalently, such that
γ({y ∈ RN | b(y1, . . . , yN) ≤ x) ≥ m. More formally

F−1
γ (m) = inf{x ∈ R : Fγ(x) ≥ m}

In plain language, F−1
γ (0, 99) ≤ 20◦ says that 99% of the time, the temperature

of the released water remains below 20◦. This gives a good way to estimate the
potential harm to the environment caused by the plant, but it is difficult to treat
mathematically (leading to a degenerate optimal transport problem). We will
therefore use the integrated expression

Rm(b]γ) =
∫ +∞

F−1
γ (m)

xdb]γ(x)

In practice, γ is very difficult to estimate (because it is a probability measure
on a high dimensional space RN), but it is quite easy to estimate the law of each
parameters independently. In other words, we do not know γ, but we know its
marginals µ1, . . . , µN ∈ P(R). The probability measure µi is the law of the parameter
yi ∈ R. So to compute the risk, we are led to make an assumption

• We could suppose naively that γ = ⊗Ni=1µi. In this case the parameters are
independent, i.e, we are in an "optimistic" scenario when rare or "bad" events
have little probability of happening at the same time. As we will discuss in the
the remark (4.9) this approach is not likely to work only is the case where b is
separable in its variables

• We suppose that γ is given by a copula function, i.e, γ = φ(r1, · · · , rN) where
φ : A ⊂ RN −→ Γ (µ1, · · · , µn). The problem reads

max
r1,··· ,rN∈A

Rm(b](φ(r1, · · · , rN)).

But it turns out that this problem is often non-convex(unless, for example, if
the embedding is affine). In addition φ(A)  Γ (µ1, · · · , µN ), which means that
we are underestimating the risk.

• Finally, we assume only that γ satisfies the marginal constraints, i.e γ ∈
Γ (µ1, · · · , µN). Hence the problem reads

max
γ∈Γ (µ1,··· ,µN )

Rm(b]γ) = max
γ

max
0≤σ≤b]γ
σ(R)=m

∫
xdσ(x)

= max
γ

max
0≤τ≤γ
τ(RN )=m

∫
b(y1, · · · , yN)dτ(y1, · · · , yN)

= max
τ∈Γ≤m(µ1,··· ,µN )

∫
bdτ (2.1)
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where
Γ≤m(µ1, · · · , µN) = {τ ∈ Γ≤(µ1, · · · , µN), τ(RN) = m}

If we denote by c(y1, · · · , yN) = −b(y1, · · · , yN), the problem becomes

min
τ∈Γ≤m(µ1,··· ,µN )

∫
cdτ

which is exactly a multi-marginal optimal partial transport problem as we will
see in details in the following chapters.

Remark 2.1 The risk can be written also as Rm(b](γ)) =
∫ 1
m F

−1
γ (m)dL(x), with L

is the Lebesgue measure on Rd. Indeed, since F−1
γ ]L = b]γ, we immediately find:

Rm(γ) =
∫ +∞

F−1
γ (m)

xdb]γ(x) =
∫ 1

m
F−1
γ (m)dL(x)

by a simple change of variables.
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3 Background on OT and variants
We start with an overview on the "classical" Monge-Kantorovich problem. Imagine
that we have a certain amount of soil which should be used to till some holes in the
ground. This task should be done while minimizing a certain cost, for example, the
traveled distance, or the effort that one does transporting this amount of soil with a
wheelbarrow.
The modern formulation of Monge problem as it was introduced by Gaspard Monge
in 1776 in his celebrated paper "Mémoire sur la théorie des déblais et des remblais",
consists in minimizing the quantity

∫
‖x−T (x)‖2dµ(x), where µ and ν are probability

measures on two compact spaces X and Y , representing the initial and the target
distribution of soil respectively, and T is a Borel map from X to Y that pushes µ
onto ν, i.e, ν coincides with the measure obtained by picking every atom at x an
putting it at T (x). More precisely

(MP) : min
∫
X
‖x− T (x)‖2dµ(x), µ(T−1(B)) = ν(B) (3.1)

for any Borelian B. Unfortunately, this problem is difficult to solve due to the
nonlinear constraint T]µ = ν. Moreover, such maps T , usually called a transport
plan, may not exist. One may think about a Dirac measure µ = δx, and another
measure ν with no atoms. So if a transport map T : X → Y exists, then 1 =
µ(T−1({T (x)})) > ν({T (x)}), so the constraint T]µ = ν is violated. To overcome
theses difficulties, Leonid Kantooivich proposed a "relaxation" of Monge problem
in his paper "On the translocation of masses", by allowing mass splitting. More
formally, he considered the problem

(KP) : min
∫
X×Y

cdγ, γ ∈ Γ (µ, ν) (3.2)

where Γ (µ, ν) is the set of probability measures on X × Y with marginals µ and ν
respectively, i.e, (πX)]γ = µ and (πY )]γ = ν, where πX , πY are the projections form
X × Y onto X and Y respectively. It turns out that this problem enjoys several
interesting properties that make the analysis easier. Namely, the set Γ (µ, ν) is always
non-empty since it contains µ ⊗ ν. Moreover, it’s richer than the set of transport
maps, in the sense that a transport map T induces a transport plan γT = (Id× T )]µ
(but the converse is false). In addition to this, Γ (µ, ν) is a convex and compact
subset of P(X × Y ) endowed with narrow topology, which helps to get existence
results under weak assumptions on the cost function c. One can prove easily the
following

Theorem 3.1 [22] Let X and Y be compact metric spaces, µ ∈ P(X), ν ∈ P(Y ) and
c : X × Y → R(R ∪ {∞}) a continuous function (respectively, lower semi-continuous
and bounded from bellow). Then (KP) admits a solution.

This kind of results can be extender to Polish spaces. This type of existence
results can be found, with different proofs, in [22–24].
We notice that (KP) is a linear optimization problem under convex constraints
(actually affine). So it is natural to derive its dual formulation. It consists basically
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in a min−max interchange.
Let γ ∈M+(X × Y ) and φ ∈ Cb(X), ψ ∈ Cb(Y ). We have

sup
φ,ψ

∫
X
φdµ+

∫
Y
ψdν −

∫
X×Y

φ⊕ ψdγ =

0 if γ ∈ Γ (µ, ν)
∞ if not

. (3.3)

So we can get ride of the constraint γ ∈ Γ (µ, ν) if we add the previous sup. This
leads to consider the following problem

min
γ∈Γ (µ,ν)

∫
cdγ + sup

φ,ψ

∫
X
φdµ+

∫
Y
ψdν −

∫
X×Y

φ⊕ ψdγ

By interchanging the inf and sup we get

sup
φ,ψ

∫
X
φdµ+

∫
Y
ψdν + inf

γ∈Γ (µ,ν)

∫
(c− φ⊕ ψ)dγ

Moreover, we can write the inf on γ as a constraint on the potentials φ, ψ:

inf
γ∈Γ (µ,ν)

∫
(c− φ⊕ ψ)dγ =

0 if φ⊕ ψ ≤ c on X × Y.
−∞ otherwise

. (3.4)

We define the dual problem (KD) as follows

(KD) : sup
{ ∫

X
φdµ+

∫
Y
ψdν, φ ∈ Cb(X), ψ ∈ Cb(Y ) and φ⊕ ψ ≤ c

}
(3.5)

Proposition 3.2 Suppose that X and Y are compact and c is continuous. Then
there exists a solution (φ, ψ) to (KD).

3.1 Multi-marginal Optimal Transport
In this section we present the multimarginal problem, which consists in studying the
same Monge-Kantorovich problem as in the previous section, but with considering
more than two marginals. This kind of problems appear in many fields such as
physics and economics [8, 11, 13].

3.1.1 Existence results

Let X1, · · · , Xn be metric spaces and c : X1× · · ·×Xn 7→ [0,∞] be the cost function
which will be assumed to be continuous or lower semi-continuous. Given n probability
measures µi ∈ P(Xi), i = 1, · · · , n, Kantorovich problem can be formulated as follows:

(KPn) : inf
γ∈Γ (µ1,··· ,µn)

{
K(γ) =

∫
X1×···×Xn

cdγ
}

(3.6)

where Γ (µ1, · · · , µn) is the set of transport plans between the µi, i.e,

Γ (µ1, · · · , µn) =
{
γ ∈ P(X1 × · · · ×Xn), (πi)]γ = µi, for i = 1, · · · , n

}
. (3.7)

The first existence result of a minimizer to (3.6) is the following.
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Theorem 3.3 Let (Xi)i=1,··· ,n be compact metric spaces, µi ∈ P(Xi), i = 1, · · · , n
and c ∈ C0(X1 × · · · ×Xn; R). Then (KPn) admits a solution.

Proof. Since c is continuous then γ 7→ K(γ) is also continuous. It remains to
prove that Γ (µ1, · · · , µn) is compact to conclude via Weirestrass criterion. Let
γj ∈ Γ (µ1, · · · , µn) be a minimizing sequence, since γj(X1 × · · · × Xn) = 1, then
(γj)j∈N is bounded in C∗(X1 × · · · ×Xn). By Banach-Alaoglu theorem, there exist
γjk ⇀ γ ∈ P(X1 × · · · ×Xn). It remains to check that γ ∈ Γ (µ1, · · · , µn). To do so,
we fix, for all i = 1, · · · , n, a function φ ∈ C(Xi) and we write that:∫

X1×···×Xn
φ(x)dγjk(x) =

∫
Xi
φ(xi)dµi(xi).

by passing to the limit we get∫
X1×···×Xn

φ(x)dγ(x) =
∫
Xi
φ(xi)dµi(xi).

as desired.

The following lemma allows us to obtain the existence of a minimizer under
weaker assumptions on c.

Lemma 3.4 If c : X1 × · · · ×Xn 7→ R ∪∞ is lower semi-continuous and bounded
from below, then γ ∈M+(X1 × · · · ×Xn) 7→ K(γ) =

∫
cdγ ∈ R ∪ {∞} is lsc for the

weak convergence of measures.

Proof. Since c is lsc then one can find a sequence of continuous functions ck converging
increasingly towards c. Then K(γ) = limk→∞

∫
ckdγ = supkKk(γ). Since the ck

are continuous then Kk are also continuous. Consequently, K is lsc as a sup of
continuous functions.

We get easily the following theorem.

Theorem 3.5 Let (Xi)i=1,··· ,n be compact metric spaces, µi ∈ P(Xi), i = 1, · · · , n
and c : X1×· · ·×Xn 7→ R∪{∞} be lsc and bounded from below. Then (KPn) admits
a solution.

We can prove more a more general result (see the appendix).

3.2 Duality
As in the two marginal setting, we derive the dual problem (KDn) for (KPn). Let
γ ∈M+(X1 × · · · ×Xn) and φi ∈ Cb(Xi) with i = 1, · · · , n. We have

sup
(φi)ni=1

n∑
i=1

∫
Xi
φidµi −

∫
X1×···×Xn

n⊕
i=1

φi(xi)dγ =

0 if γ ∈ Γ (µ1, · · · , µn)
∞ if not

. (3.8)

So we can get ride of the constraint γ ∈ Γ (µ1, · · · , µn) if we add the previous sup.
This leads to consider the following problem

min
γ∈Γ (µ1,··· ,µn)

∫
cdγ + sup

(φi)ni=1

n∑
i=1

∫
Xi
φidµi −

∫
X1×···×Xn

n⊕
i=1

φi(xi)dγ
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By interchanging the inf and sup we get

sup
(φi)ni=1

n∑
i=1

∫
Xi
φidµi + inf

γ∈Γ (µ1,··· ,µn)

∫
(c−

n⊕
i=1

φi(xi))dγ

Moreover, we can write the infγ as a constraint on the potentials (φ1, · · · , φn):

inf
γ∈Γ (µ1,··· ,µn)

∫
(c−

n⊕
i=1

φi(xi))dγ =

0 if
⊕n

i=1 φi ≤ c on X1 × · · · ×Xn.

−∞ otherwise
. (3.9)

We define the dual problem (KDn) as follows

(KDn) : sup
{ n∑
i=1

∫
Xi
φidµi, φi ∈ Cb(Xi) and

n⊕
i=1

φi ≤ c
}

(3.10)

Proposition 3.6 Suppose that X1, · · · , Xn are compact and c is continuous. Then
there exists a solution (φ1, · · · , φn) to (KDn).

Proof. Let (φk1, · · · , φkn)k∈N be a maximizing sequence. Without loss of generality,
we can assume that this sequence of n-tuple of functions is c-conjugate with respect
to c, i.e: for all i = 1, · · · , n

φki (xi) = inf c(x1, · · · , xn)−
n∑

j=1,j 6=i
φkj (xj), for xj ∈ Xj, j 6= i.

Since c is continuous on compact sets, and hence uniformly continuous, one has

|c(x1, · · · , xn)− c(y1, · · · , yn)| ≤ ωc

(
d1(x1, y1) + · · ·+ dn(xn, yn)

)
where ωc is the modulus of continuity of c and di is a given metric on Xi for
i = 1, · · · , n. So for two elements xi, yi ∈ Xi we have(

c(x1, · · · , xi, · · · , xn)−
n∑

j=1,j 6=i
φkj (xj)

)
−
(
c(x1, · · · , yi, · · · , xn)−

n∑
j=1,j 6=i

φkj (xj)
)

= c(x1, · · · , xi, · · · , xn)− c(x1, · · · , yi, · · · , xn) ≤ ωc

(
di(xi, yi)

)
. (3.11)

which gives
|φki (xi)− φki (yi)| ≤ ωc

(
di(xi, yi)

)
.

All the φki are bounded since they are continuous on compact setsXi. Since
⊕n

i=1 φ
k
i ≤

c, we also have for xi, x∗i ∈ Xi, 1 ≤ i ≤ n− 1:(
φk1(x1)− φk1(x∗1)

)
+ · · ·+

(
φkn−1(xn−1)− φkn−1(x∗n−1)

)
+ φkn(xn) +

∑
i≤n−1

φki (x∗i ) ≤ c

For all 1 ≤ i ≤ n− 1 we set φ̃ki = φki − φki (x∗i ). It is clear that theses functions share
the same modulus of continuity as the φki , and they satisfy φ̃ki (x∗i ) = 0. Moreover,
we have for xn ∈ Xn and i ≤ n− 1:

φ̃ki (xi) = inf c−
∑
j 6=i

φ̃kj ∈ [min c−
∑
j 6=i

ωc(diam(Xj)),max c]
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On the other hand, we have

φkn(xn) = inf c−
∑

j≤n−1
φkj ∈ [min c−

∑
j≤n−1

ωc(diam(Xj)),max c]

and this gives uniform bounds on the potentials (φki )1≤i≤n for all k ∈ N. So the
family (φk1, · · · , φkn)k∈N is equibounded, and by Ascoli-Arzelà’s theorem, up to an
extraction, we get that φki →

k→∞
φi for all i = 1, · · · , n. By uniform convergence we

have ∫
Xi
φki dµi →

k→∞

∫
Xi
φidµi

and
n⊕
i=1

φki (xi) ≤ c(x1, · · · , xn)⇒
n⊕
i=1

φi(xi) ≤ c(x1, · · · , xn)

So that (φ1, · · · , φn) is a solution to (KDn).

We give a proof to the duality result (KPn) = (KDn) based on some properties
of Legendre-Fenchel transform, namely, a function f is lsc and convex if and only if
f ∗∗ = f . It is adapted from [22].

Lemma 3.7 Let p ∈ C(X1 × · · · ×Xn) and define

Θ(p) = −max
{ n∑
i=1

∫
Xi
φidµi,

n⊕
i=1

φi(xi) ≤ c(x1, · · · , xn)− p(x1, · · · , xn)
}

Then Θ is convex and lsc for uniform convergence on X1 × · · · × Xn, and it’s
Legendre-Fenchel transform is given by

Θ∗(γ) =

K(γ) if γ ∈ Γ (µ1, · · · , µn)
+∞ otherwise

. (3.12)

for γ ∈M(X1, · · · , Xn)

Proof. Let p, q ∈ C(X1 × · · · ×Xn) and (φ1, · · · , φn), (ψ1, · · · , ψn) be respectively
the corresponding optimal potentials. For i = 1, · · · , n and t ∈ [0, 1], we define the
following convex combinations r = (1− t)p+ tq, χi = (1− t)φi + tψi. We then have

Θ(r) ≤ −
( n∑
i=1

∫
Xi
χidµi

)
= −

( n∑
i=1

∫
Xi

((1− t)φi + tψi)dµi
)

≤ (1− t)Θ(p) + tΘ(q). (3.13)

which proves convexity. Let pj → p in C(X1× · · · ×Xn). There exists a subsequence
pjk such that Θ(pjk) = lim inf Θ(pj). Ascoli-Arzelà theorem ensures equicontinuity
and equiboundedness of the pjk and so are the corresponding potentials (φjk1 , · · · , φjkn ).
Consequently, we can assume that φjki →

k→+∞
φi uniformly for all i = 1, · · · , n.

Moreover, ∑n
i=1 φ

jk
i (xi) ≤ c(x1, · · · , xn) − pjk(x1, · · · , xn), and we may pass to the

limit to obtain that ∑n
i=1 φi(xi) ≤ c(x1, · · · , xn)− p(x1, · · · , xn). Finally

Θ(p) ≤ −
( n∑
i=1

∫
Xi
φi(xi)dµi

)
= lim

k→+∞
Θ(pjk) = lim inf Θ(pj)
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and this proves lower semi-continuity. Now take γ ∈ Γ (µ1, · · · , µn) and write

Θ∗(γ) = sup
p

∫
X1×···×Xn

pdγ + sup
φ1,··· ,φn

{ n∑
i=1

∫
Xi
φi(xi)dµi,

n⊕
i=1

φi ≤ c− p
}
.

We observe that if γ /∈ M+(X1, · · · , Xn), there exists p0 ≤ 0 such that
∫
p0dγ ≥ 0.

So if we take all the potentials φi to be zero and p = c+np0, we get that Θ∗(γ) = +∞.
On the other hand, if we take p = c−⊕n

i=1 φi, we obtaint that

Θ∗(γ) = sup
φ1,··· ,φn

∫
X1×···×Xn

(
c(x1, · · · , xn)−

n∑
i=1

φi(x1, · · · , xn)
)
dγ+

n∑
i=1

∫
Xi
φidµi = K(γ)

Theorem 3.8 If X1, · · · , Xn are compact spaces and c is continuous, then the duality
formula min(KPn) = sup(KDn) holds.

Proof. Since Θ is convexe and lsc, we have Θ(0) = − sup(KDn) = Θ∗∗(0). But,
Θ∗∗(0) = supγ∈M(X1,··· ,Xn) < γ, 0 >C∗,C −Θ∗(γ) = −infΘ∗ = −min(KPn).

3.3 Optimal Partial Transport
We give a brief interpretation of the partial transport problem as in [9]. Consider
two measures µ and ν with densities f and g respectively. The density f represent
the distribution of bakeries and g the distribution of coffee shops. The classical
Monge-Kantorovich problem consists to decide which bakery should supply bread to
each coffee shop in order to minimize a certain given cost. In general, this problem
is studied in the case where produced bread is totally consumed, i.e,∫

f(x)dx =
∫
g(y)dy <∞.

A natural question that can arise is the following: what happens when the supply and
demand are not equal, i.e, if we transport only a quantity 0 < m < min{‖f‖L1 , ‖g‖L1},
then what are the bakeries that will continue producing bread, and which coffee
shops should they supply so that we keep minimizing the transport cost ?
This problem has been studied extensively in the last few years, and we refer the
reader to [9, 17] and the references therein for more details and extensions.

In this section we present the formulation of the partial transport problem, some
existence results, and its dual formulation.
Let X = Y = Rd, and assume that c is lower semincontinuous and bounded from
below. Let µ ∈ P(X) and ν ∈ P(Y ) and fix m ∈]0, 1[. A natural extension of
Kantorovich problem is the following

(KP≤) : inf
γ∈Γ≤m

{
K(γ) =

∫
X×Y

cdγ
}

(3.14)

where Γ≤m(µ, ν) = {γ ∈M+(X×Y ), (πx)]γ ≤ µ, (πy)]γ ≤ ν, and γ(X×Y ) = m}.
As usual the proof of the existence of minimizers for (3.14) is bases on lower-
semicontinuity and compactness arguments. Recall this general version of Prokhorov’s
theorem, and accept it as true for the moment.
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Theorem 3.9 Let X be a compact space and F be a subset of the space of sub-
probability measures, i.e, F ∈ {µ ∈M+(X), µ(X) < 1}. Then F is tight if and only
if F is weakly relatively sequentially compact.

We can state the following theorem.

Theorem 3.10 Let X and Y be compact spaces. Assume that c is lower-semicontinuous
and bounded from below. Then (KP≤) admits a minimizer.

Proof. By Prokhorov’s theorem Λ is relatively compact. To get narrow compactness,
take (γn) ∈ Λ and assume that γn ⇀ γ. We have to prove that γ ∈ Λ. To do so,
take an arbitrary function φ ∈ Cb(X) and notice that φ ∈ Cb(X × Y ) as well. Hence
we have∫

φd(πx)]γ =
∫
φ(x)dγ(x, y) = lim

n→+∞

∫
φ(x)dγn = lim

n→+∞

∫
φd(πx)]γn ≤

∫
φdµ

which means that (πx)]γ ≤ µ. Similarly we prove that (πy)]γ ≤ ν. On the other
hand we have that

∫
X×Y dγ = limn

∫
X×Y dγn = m and hence, γ(X × Y ) = m. This

proves that γ ∈ Λ. On the other hand, since c is lsc and bounded from below, there
exists an increasing sequence cn ∈ Cn(X × Y ; R) such that c(x, y) = supn cn(x, y) so
that

∫
cdγ = supn

∫
cndγ. Since limj→+∞

∫
cndγj =

∫
cndγ we have∫

cdγ = sup
n

∫
cndγ ≤ lim inf

∫
cdγn

Consequently, γ 7→
∫
cdγ is lsc with respect to narrow convergence.

Now we focus on how to derive the dual problem of (KP≤). First we introduce a
Lagrange multiplier λ conjugate to the constraint γ(X × Y ) = m. Consider then the
problem

(KPλ≤) : inf
γ∈Γ≤(µ,ν)

∫
(c(x, y)− λ)dγ(x, y)

where Γ≤(µ, ν) is the set of all measures whose marginals are dominated by µ and ν.
We write that

(KPλ≤) = inf
{
< c− λ, γ >| γ ≥ 0, < φ, µ− (πx)]γ >≥ 0,

< ψ, ν − (πy)]γ >≥ 0, ∀φ ∈ Cb(X),∀ψ ∈ Cb(Y )
}

= inf
γ≥0

sup
φ,ψ≤0

< c− λ, γ > + < φ, µ− (πx)]γ > + < ψ, ν − (πy)]γ >

= inf
γ≥0

sup
φ,ψ≤0

< (c− λ)− (φ⊗ 1 + 1⊗ ψ), γ > + < φ, µ > + < ψ, ν > (3.15)

By interchanging the inf and sup and noticing that

inf
γ≥0

< (c− λ)− (φ⊗ 1 + 1⊗ ψ), γ >=

0, if φ⊕ ψ ≤ c− λ
−∞, if not.



14 3 BACKGROUND ON OT AND VARIANTS

hence the dual problem can be written as

(KDλ≤) : sup
φ,ψ≤0

φ⊕ψ≤c−λ

∫
X
φdµ+

∫
Y
ψdν (3.16)

We note that, if the optimizer of (KPλ≤) is unique, we denote it γλ and its total mass
m(λ) = Rd × Rd. Then m(λ) = −∂(KPλ≤)/∂λ increases from 0 to m as λ increases
[9]. Thus, for a properly chosen λ ≥ 0, we are given a mass m. Finally, we show that
only one measure in Γ≤m with mass m is optimal. We note also that (3.16) can be
obtained by Kantorovich duality for the cost c− λ.

Remark 3.11 In the particular case of a quadratic cost c(x, y) = |x − y|2/2, the
problem

inf
φ̃+ψ̃≥<x,y>

{ ∫
X
φ̃dµ+

∫
Y
ψ̃dν, φ̃(x) ≥ (|x|2 − λ)/2, ψ̃(y) ≥ (|y|2 − λ)/2

}
(3.17)

is equivalent to (KPλ≤) in the sense that (φ̃ = (|x|2 − λ)/2− φ, ψ̃ = (|y|2 − λ)/2− ψ)
minimize (3.17) when (φ, ψ) maximize (KPλ≤).

Indeed, if (φ, ψ) is optimal, we easily check that

(|x|2 − λ)/2− φ+ (|y|2 − λ)/2− ψ = (|x|2 + |y|2)/2− λ− (φ+ ψ) ≥ λ− c

this shows that φ̃ + ψ̃ ≥< x, y >. Since φ ≤ 0 and ψ ≤ 0 we see that φ̃(x) ≥
(|x|2−λ)/2 and ψ̃(y) ≥ (|y|2−λ)/2, i.e, (φ̃, ψ) is admissible for (3.17). The converse
is obviously true. Moreover, the difference between (KPλ≤) and (3.17) is determined
by the second order moments and total masses of µ and ν. More precisely, we have

sup
{ ∫

X
φ̃dµ+

∫
Y
ψ̃dν

}
− inf

{ ∫
X
φ̃dµ+

∫
Y
ψ̃dν

}
= sup

{ ∫
X

(φ̃+ φ)dµ+
∫
Y

(ψ̃ + ψ)dν
}

=
∫
X
|x|2dµ+

∫
Y
|y|2dν−(µ(X)+ν(Y )) = W 2

2 (µ, δ0)+W 2
2 (ν, δ0)−(µ(X)+ν(Y )).

(3.18)

Using Brenier’s result [6], we can always assume that φ̃, ψ̃ are convex functions.
Hence, the optimal solutions of (KPλ≤) and (3.17) are linked by

γ
(
{(x,∇ψ̃), x ∈ U}

)
= γ(Rd × Rd) =

∫
U
f(x)dx.

where U = {ψ̃(x) ≥ (|x|2 − λ)/2}.



15

4 Multi-marginal Optimal Partial Transport

4.1 Formulation
The multi-marginal partial transport problem was studied by Brendan Pass and Jun
Kitagawa in [18] as an extension of the partial barycentre problem. In this section we
give the formulation of the multimarginal partial problem, we recall for completeness,
the partial barycentre problem and we state the main results of [18].
As before, consider N compact spaces, X1, · · · , XN and N measures, µi ∈ M(Xi)
for i = 1, · · · , N and fix 0 ≤ m ≤ min1≤i≤N µi(Xi). We denote by Γ≤m(µ1, · · · , µN)
the set

Γ≤m(µ1, · · · , µN) = {γ ∈M+(X1×· · ·×XN), (πxi)]γ ≤ µi, γ(X1×· · ·×XN) = m}

We call a solution of the multi-marginal partial problem a measure γ̃ ∈ Γ≤m(µ1, · · · , µN )
achieving the minimum value in

(MMPm) : min
γ∈Γ≤m(µ1,··· ,µN )

{
K(γ) =

∫
X1×···×XN

cdγ
}

(4.1)

This is problem is equivalent to the partial barycentre problem in the case c(x1, · · · , xN ) =∑N
ij=1 |xi − xj|2. Before stating the result making the relation between the two prob-

lems, we recall "standard" barycentre problem. Given N µ1, · · · , µN measures on Rd,
with equal mass m, the goal is to minimize the quantity

(BC) : min
ν∈M2

m

N∑
i=1

min
γ∈Γ (µi,ν)

∫
|x− y|2dγ (4.2)

where M2
m is the set of measures with total mass m and of finite second order

moment, i.e,

M2
m = {ν ∈M+(Rd), ν(Rd) = m,

∫
|x|2dν <∞}

This problem was studied by Agueh and Carlier in [1] were they show the equivalence
with the standard multimarginal problem. Jun Kitagawa and Brendan Pass proposed
a similar problem, which consists in finding a minimizer of

(PBCm) :
N∑
i=1

min
γ∈Γ≤m(µi,ν)

∫
|x− y|2dγ. (4.3)

and they show that (MMPm) and (PBCm) are equivalent in the following sense:

Proposition 4.1 • Let µi for i = 1, · · · , N be absolutely continuous measures
and 0 ≤ m ≤ mini=1,··· ,N µi(Rd). Define the map F by

F (x1, · · · , xN) = 1
N

N∑
i=1

xi

Then if γ is an optimal plan in (MMPm), F]γ is optimal in (PBCm).
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• If µ is a minimizer in (PBCm) then the measure (T ν1 , · · · , T νN)]ν is optimal
in (MMPm), where T νi is the optimal mapping such that

(
T νi × Id

)
]
ν solves

minγ∈Γ≤m(µi,ν)
∫
|x− y|2dγ

Furthermore, uniqueness in of the minimizer in one problem implies uniqueness
in the other one.

Moreover, the main result of [18] consists in establishing uniqueness of the
minimizer in (PBCm) under assumptions on the measures and the transported mass.
More precisely,
Theorem 4.2 Assume that the absolutely continuous measures µi have finite mass
with densities gi. We define the measure µ̃ = µ1 ∧ · · · ∧ µN , which is the absolutely
continuous measure with density g̃ = min1≤i≤N gi. If the mass m is such that

µ̃(Rd) ≤ m ≤ min
1≤i≤N

µi(Rd)

then (PBCm) admits a unique minimizer. Consequently, the multimarginal partial
problem (MMPm) admits a unique minimizer under these assumptions.

4.2 Modulus of continuity of the transport cost
In this section we give an estimate of the modulus of continuity of the transport cost.
This is motivated by our modelling problem presented in the first chapter. More
precisely, we have seen that the marginals µ1, · · · , µN representing the parameters
of work of a nuclear plant are only known up to an error, i.e, they represent only
estimations of the real parameters. We would therefore like the risk to be continuously
dependent on this estimate. We add to this that such continuous dependency will
play a major role in the discretization of the problem as we will see later.
Our goal is to prove the following
Theorem 4.3 Let X, Y be compact metric spaces endowed with the Euclidean metric,
and µ, µ̃ ∈ P(X), ν, ν̃ ∈ P(Y ). We denote by γOpt the optimal transport plan between
µ, ν and γ̄Opt an the optimal plan between µ̃ and ν̃. Assume that the cost function c
is of class C1,1, and that W2(µ, µ̃),W2(ν, ν̃) < ε, for some ε > 0. Then∣∣∣∣ ∫ cdγOpt −

∫
cdγ̄Opt

∣∣∣∣ . O(ε).

and the constants in O(ε) depend only on c.
Proof. Let Λ ∈ Γ (γOpt, γ̄Opt) such that∫

(X×Y )2
|α− β|2dΛ = min

Υ∈Γ (γOpt,γ̄Opt)

∫
|α− β|2dΥ

where α = (x, y) ∈ X × Y and β = (x̃, ỹ) ∈ X × Y . We have∣∣∣∣ ∫ cdγOpt −
∫
cdγ̄Opt

∣∣∣∣ =
∣∣∣∣ ∫ c(β)dΛ(α, β)−

∫
c(α)dΛ(α, β)

∣∣∣∣
=
∣∣∣∣ ∫ (c(β)− c(α))dΛ(α, β)

∣∣∣∣ =
∣∣∣∣ ∫ ∫ 1

0
∇c(α + λ(β − α)) · (β − α)dλdΛ(α, β)

∣∣∣∣
≤
∣∣∣∣ ∫ ∇c(α) · (β − α)dΛ

∣∣∣∣+R (4.4)



4.2 MODULUS OF CONTINUITY OF THE TRANSPORT COST 17

Where R is a remainder term that can be bounded by

|R| ≤ Lip(∇c)
2

∫
|α− β|2dΛ = Lip(∇c)

2 W 2
2 (γOpt, γ̄Opt)

On the other hand, applying Cauchy-Schwartz inequality nor we obtain∣∣∣∣ ∫ ∇c(α) · (β − α)dΛ
∣∣∣∣ ≤ ‖∇c‖L2(Λ)W2(γOpt, γ̄Opt).

By assumption W2(µ, µ̃),W2(ν, ν̃) < ε, we then have

W 2
2 (γOpt, γ̄Opt) ≤ W 2

2 (µ, µ̃) +W 2
2 (ν, ν̃) < 2ε.

By an approximation argument, we may assume that mu,nu are absolutely continuous.
Then, by Brenier’s theorem, there exists T , T̃ transport maps such that T]µ = µ̃,
and T̃]ν = ν̃. We then have

W 2
2 (µ, µ̃) =

∫
|x− T (x)|2dµ(x), W 2

2 (ν, ν̃) =
∫
|x− T̃ (x)|2dν(x)

and γ̃ = (T, T̃ )]γOpt ∈ Γ (µ̃, ν̃). We need to check that it’s marginals are µ̃ and ν̃.
We have∫

φ(x)dγ̃(x, y) =
∫
φ(T (x))dγOpt(x, y) =

∫
φ ◦ Tdγ

=
∫
φ ◦ Tdµ =

∫
φdµ̃. (4.5)

and similarly,
∫
φ(y)dγ̃(x, y) =

∫
φdν̃. We have

W 2
2 (γOpt, γ̃) ≤

∫
|(x, y)− (T (x), T̃ (y))|2dγOpt(x, y)

=
∫
|x− T (x)|2dγOpt(x, y) +

∫
|y − T̃ (y)|2dγOpt(x, y)

=
∫
|x− T (x)|2dµ(x) +

∫
|y − T̃ (y)|2dν(y)

= W 2
2 (µ, µ̃) +W 2

2 (ν, ν̃) < 2ε2. (4.6)

as desired. Combining this with the previous inequalities, we obtain∣∣∣∣ ∫ cdγOpt −
∫
cdγ̄

∣∣∣∣ ≤ f(ε) , 2ε‖∇c‖L2(Λ) +
√

2
2 Lip(∇c)ε.

We immediately have the following

Corollary 4.4 Given probability measures (µεi )1≤i≤n and (µi)1≤i≤n on some compact
space X such that µεi ⇀ε→0

µi. If the optimal transport plan γ between the (µi)1≤i≤n is
unique and γε∗ is the optimal transport plan between the (µεi )1≤i≤n, then

γε∗ ⇀ γ as ε→ 0.
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4.3 Duality
Now, we turn our attention to the corresponding dual problem. As usual, the con-
straint γ ∈ Γ≤m(µ1, · · · , µn) will become, in some sense, the functional to maximize
and the functional

∫
cdγ will become the constraint in the dual problem. We start

by noticing that

inf
γ∈Γ≤m(µ1,··· ,µn)

∫
cdγ = inf

γ∈M+(X1×···Xn)

∫
cdγ + Υ (γ)

where Υ (γ) = 0 if γ ∈ Γ≤m(µ1, · · · , µn) and +∞ if not. We claim that Υ can be
written as

Υ (γ) = sup
{ n∑
i=1

∫
Xi
φidµi−

∑
i=1

< φ⊗1 | γ > +κ
(
m−

∫
dγ
)
, φ ∈ Cb(Xi), φi ≤ 0, κ ≥ 0

}
In fact,

• If γ ∈ Γ≤m(µ1, · · · , µn), we see that κ(m −
∫
dγ) ≤ 0, since κ ≥ 0 and∫

dγ ≥ 0. Hence supκ≥0 κ(m−
∫
dγ) = 0. On the other hand, since (πx)]γ ≤ µi,∑n

i=1 < φi | µi − (πx)] >≤ 0 provided φi ≤ 0 for all i = 1, · · · , n. Hence
Υ (γ) = 0 if γ ∈ Γ≤m(µ1, · · · , µn).

• If γ /∈ Γ≤m(µ1, · · · , µn), we can take the potentials φi to be zero and note that,
in this case,

∫
dγ ≤ m implies that supκ≥0 κ(m−

∫
dγ) = +∞. Thus, we can

write

(KPn≤) : inf
γ∈Γ≤m(µ1,··· ,µn)

∫
X1×···×Xn

cdγ

= inf
γ≥0

sup
κ≥0,φi≤0

{
< c | γ > +

n∑
i=1

< φi | (µi − (πxi)]γ) > +κ
(
m−

∫
dγ
)}

= inf
γ≥0

sup
κ,φi≤0

{
< c− κ−

n∑
i=1

φi ⊕ 1 | γ > +
n∑
i=1

∫
Xi
φidµi + κm

}
(4.7)

we interchange the inf and sup to get

inf
γ∈Γ≤m(µ1,··· ,µn)

∫
X1×···×Xn

cdγ

= sup
κ≥0,φi≤0

inf
γ≥0

{
< c− κ−

n∑
i=1

φi ⊕ 1 | γ > +
n∑
i=1

∫
Xi
φidµi + κm

}

= sup
κ≥0,φi≤0

{ n∑
i=1

∫
Xi
φidµi + κm+ inf

γ≥0
< c− κ−

n∑
i=1

φi ⊕ 1 | γ >
}

(4.8)

We observe that

inf
γ≥0

< c− κ−
n∑
i=1

φi ⊕ 1 | γ >=

0, if ⊕ni=1 φi ≤ c− κ
−∞, ifnot.

hence the dual problem can be written as

(DPn≤) : sup
{ n∑
i=1

∫
Xi
φidµi + κm, κ ≥ 0, φi ≤ 0, ⊕ni=1φi ≤ c− κ

}
(4.9)
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Proposition 4.5 Suppose that X1, · · · , Xn are compact and c is continuous. Then
there exists a solution (κ, φ1, · · · , φn) to (DPn≤).

Proof. Let (φk1, · · · , φkn)k∈N, (κk)k∈N be a maximizing sequence. As in the proof of
Proposition 2.2.1, the sequence of potentials φi can be always improved by taking
c-transforms so that all the φki share the same modulus of continuity as c and are
equibounded. So the family (φk1, · · · , φkn)k∈N is equicontinuous and equibounded,
and by Ascoli-Arzelà’s theorem, up to an extraction, we get that φki →

k→∞
φi for all

i = 1, · · · , n. On the other hand, we have that κk ≤ c−⊕ni=1φ
k
i ≤ C, where C is a

positive constant. This show that, up to an extraction if necessary, κk →
k→∞

κ ≥ 0.
By uniform convergence we have∫

Xi
φki dµi +mκk →

k→∞

∫
Xi
φidµi +mκ

and
n⊕
i=1

φki (xi) ≤ c(x1, · · · , xn)− κk ⇒
n⊕
i=1

φi(xi) ≤ c(x1, · · · , xn)− κ

So that (κ, φ1, · · · , φn) is a solution to (KDn≤).

To prove the duality formula (KPn≤) = (DPn≤) we introduce as before the
functional Θ defined by

Lemma 4.6 Let p ∈ C(X1 × · · · ×Xn) and define

Θ(p) = −max
{ n∑
i=1

∫
Xi
φidµi + κm, ⊕ni=1φi ≤ (c− κ)− p, κ ≥ 0, φi ≤ 0

}

Then Θ is convex and lsc for uniform convergence on X1 × · · · × Xn, and it’s
Legendre-Fenchel transform is given by

Θ∗(γ) =

K(γ) if γ ∈ Γ≤m(µ1, · · · , µn)
+∞ otherwise

. (4.10)

for γ ∈M(X1, · · · , Xn)

Proof. Let p, q ∈ C(X1×· · ·×Xn) and (κ, φ1, · · · , φn), (ι, ψ1, · · · , ψn) be respectively
the corresponding optimal solutions. For i = 1, · · · , n and t ∈ [0, 1], we define the
following convex combinations r = (1− t)p+ tq, χi = (1− t)φi+ tψi, θ = (1− t)κ+ tι.
Theses combinations are admissible since

⊕ni=1 χi = ⊕ni (1− t)φi + tψi = (1− t)⊕ni=1 φi + t⊕ni=1 χi

= (1− t)(c− κ− p) + t(c− ι− q) = (c− θ)− r. (4.11)

Moreover,

Θ(r) ≤ −
( n∑
i=1

∫
Xi
χidµi + θm

)
= −

( n∑
i=1

∫
Xi

((1− t)φi + tψi)dµi + (1− t)κ+ tι
)

≤ (1− t)Θ(p) + tΘ(q). (4.12)
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which proves convexity. Let’s prove lsc. Let pj → p in C(X1 × · · · × Xn). There
exists a subsequence pjk such that Θ(pjk) = lim inf Θ(pj). Ascoli-Arzelà theorem
ensures equicontinuity and equiboundedness of the pjk and so are the corresponding
potentials (φjk1 , · · · , φjkn ), and particularly, (κjk) is bounded. Consequently, we can
assume that φjki →

k→+∞
φi uniformly for all i = 1, · · · , n, and κjk →

k→+∞
κ. Moreover,∑n

i=1 φ
jk
i (xi) ≤ (c(x1, · · · , xn)− κjk)− pjk(x1, · · · , xn), and we may pass to the limit

to obtain that ∑n
i=1 φi(xi) ≤ (c(x1, · · · , xn)− κ)− p(x1, · · · , xn). Finally

Θ(p) ≤ −
( n∑
i=1

∫
Xi
φi(xi)dµi +mκ

)
= lim

k→+∞
Θ(pjk) = lim inf Θ(pj)

and this proves lower semi-continuity. Now take γ ∈ Γ (µ1, · · · , µn) and write

Θ∗(γ) = sup
p

∫
X1×···×Xn

pdγ+ sup
φi≤0,κ≥0

{ n∑
i=1

∫
Xi
φi(xi)dµi +κm,

n⊕
i=1

φi ≤ (c−κ)− p
}
.

We observe that if γ /∈ M+(X1, · · · , Xn), there exists p0 ≤ 0 such that
∫
p0dγ > 0.

So if we take all the potentials φi to be zero and p = c+Np0, for N →∞, we get
that Θ∗(γ) = +∞. On the other hand, if we take p = c− κ−⊕n

i=1 φi, we obtaint
that

Θ∗(γ) = sup
φ1,··· ,φn

∫
X1×···×Xn

(
c(x1, · · · , xn)−κ−

n∑
i=1

φi(x1, · · · , xn)
)
dγ+

n∑
i=1

∫
Xi
φidµi+κm = K(γ)

Theorem 4.7 Suppose that X1, · · · , Xn are compact spaces and c is continuous.
The the duality formula min(KPn≤) = max(KDn≤) holds.

Proof. Since Θ is convex and lsc, we have Θ(0) = − sup(KDn≤) = Θ∗∗(0). But,
Θ∗∗(0) = supγ∈M < γ |> −Θ∗(0) = − infγ Θ∗ = −min(KPn≤). Hence, min(KPn≤) =
max(DPn≤).

Remark 4.8 One natural question that can arise is the following: Is the application
(µ1, · · · , µn) 7→ Cm(µ1, · · · , µn) := minγ∈Γ≤m(µ1,··· ,µn)

∫
cdγ continuous ? We give

a negative answer when the cost function can take infinite values, by adapting a
counter-example of [7]. Assume that µi = µ for all i = 1, · · · , n. So the problem
rewrites

(KPn≤) : Cm(µ) = min
γ∈Γ≤(µ)

∫
cdγ

where Γ≤m(µ) = {γ ∈ P(Xn), (πxi)]γ = µ, ∀i = 1, · · · , n, γ(Xn) ≥ m}. Since the
cost c is by assumption lsc, then µ 7→ Cm(µ) is lsc. Indeed, if µn ⇀ µ, we have for
all γ ∈ Γ≤m(µn)

(πxi)]γ ≤ µn ⇒
n→∞

(πxi)]γ ≤ µ

so obviously γ is also admissible for µ. And we have

lim inf
n→∞

Cm(µn) = lim inf
n→∞

min
γ∈Γ≤m(µn)

∫
cdγ ≥ min

γ∈Γ≤m(µ)

∫
cdγ ≥ Cm(µ)
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We shall prove that this application cannot be upper semicontinuous. We
consider the two marginal setting, i.e, n = 2, and consider c(x, y) = 1/|x − y|.
Take µ = 1/2δx + 1/2δy for x 6= y, and µk = (1/2 + 1/k)δx + (1/2 − 1/k)δy. For
φ ∈ Cb(X ×X) we have

< µk | φ >= (1/2+1/k)φ(x)+(1/2−1/k)φ(y) →
k→∞

1/2φ(x)+1/2φ(y) =< µ | φ >
(4.13)

which means that µk ⇀ µ. But Cm(µ) = 1/|x − y|, and Cm(µk) = +∞ for k ≥ 1.
This shows that lim sup→∞Cm(µk) ≤ Cm(µ) is violated. Hence the application
cannot be continuous. In [7] the authors studies some conditions implying continuity
of C(µ) with respect to narrow convergence. More particularly they show that C(µ)
is Lipschitz-continuous on every bounded set of Lp(Rd), p > 1 for Coulomb-type
costs.

Remark 4.9 Take b = −c and assume that b is non-negative and decreasing in
the xi variables, i.e, xi 7→ b(x1, · · · , xi, · · · , xn) is decreasing for all i = 1, · · · , n.
Suppose that the measures µi are supported in R+. We write

min
γ∈Γ≤m(µ1,··· ,µn)

∫
cdγ = − max

γ∈Γ≤m(µ1,··· ,µn)

∫
bdγ.

We are looking for conditions ensuring triviality of the MMP solution. In other
words, when does the equality

(1) := max
γ∈Γ≤m(µ1,··· ,µn)

∫
cdγ = (2) := max

νi(R)≥m
νi≤µi

∫
bdν1 ⊗ · · · ⊗ νn

holds ? The inequality (1) ≥ (2) always holds since the constraints νi ≤ µi and
νi(R) ≥ m, imply that dνi ⊗ · · · ⊗ dνn ∈ Γ≤m(µ1, · · · , µn). We assume that the cost
c is C1. Let γOpt be the solution of MMP, we can write

∫
Rn
bdγOpt =

∫
Rn

(
b(0, · · · , 0) +

n∑
i=1

xi

∫ 1

0
∂xib(sx1, · · · , sxn)ds

)
dγOpt

= b(0, · · · , 0)γOpt(Rn) +
n∑
i=1

∫
R
(xi

∫ 1

0
∂xib(sx1, · · · , sxn)ds)dγOpt (4.14)

We have
∫
b⊗ni=1dνi−

∫
bdγOpt = b(0, · · · , 0)Πn

i=1νi(R)+
n∑
i=1

< xi

∫ 1

0
∂xib(sx1, · · · , sxn)ds|νi >

− b(0, · · · , 0)γOpt(Rn)−
n∑
i=1

< xi

∫ 1

0
∂xib(sx1, · · · , sxn)ds|µi >

= b(0, · · · , 0)(Πn
i=1νi(R)− γOpt(Rn) +

n∑
i=1

< xi

∫ 1

0
∂xib(sx1, · · · , sxn)ds|νi − µi >

(4.15)
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since by assumption, νi ≤ µi, xi ≥ 0 and ∂xib ≤ 0 we deduce that∫
b⊗ni=1 dνi ≥

∫
bdγOpt = max

γ∈Γ≤m(µ1,··· ,µn)

∫
bdγ

and consequently (2) ≥ (1). We note that the computations namely in the expansions
are justified as follows. Let γOpt is the optimal plan between the µi, and φi, i =
1, · · · , n are the Kantorovich potentials, if we assume that µi � L (this implies that
ν � L), we have the optimality condition

φ1(x1) + · · ·+ φn(xn) + κ = −b(x1, · · · , xn) on spt(γOpt).

So at least on the support of γOpt, b is separated in the variables xi.
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5 Entropic Regularization

5.1 General setting
In this section, all probability measures are absolutely continuous with the Lebesgue
measure, and we will often conflate the probability measure with the density. The
(negative) entropy of a probability measure is given by

H(µ) =


∫

Rd

(
log(µ(x))− 1

)
µ(x)dx if µ� L.

+∞ if not.

Given µ, ν ∈ P(Rd) absolutely continuous, the regularized Monge-Kantorovich
problem is given by

(MKε) : inf
γ∈Γ (µ,ν)

∫
c(x, y)dγ(x, y) + εH(γ) (5.1)

It turns out that this problem is linked to the Schrödinger’s Brige Problem about
the flow density of particles between two points. We refer the interested reader to
[19, 20] and the references therein.

5.2 Around Γ -convergence
Given a probability measure µ ∈ P(Rd), we define its entropy H1(µ) as above and it’s
second moment byM2(µ) =

∫
Rd |x|2dx. We denote by P2(Rd) the set of all probability

measures on Rd with finite second order moment. Given µ, ν ∈ Pac2 (Rd), such that
H1(µ), H1(ν) <∞, consider γ ∈ Γ (µ, ν). We similarly define it’s entropy by

H2(γ(x, y)) =


∫

Rd×Rd γ(x, y) log(γ(x, y))dxdy, if γ ∈ Pac(Rd × Rd)
+∞ otherwise.

Given ε ≥ 0 we define the functional

Kε(γ) =


∫
cdγ + εH2(γ) if γ ∈ Γ (µ, ν)

+∞ otherwise

and K := K0. A natural question is whether Kε converges in some sense to K
as ε → 0. This kind of questions can be naturally adressed in the framework of
Γ -convergence.

Definition 5.1 We say that Kk Γ -converges to K if for every γ ∈ P(Rd × Rd), one
has:

• Γ − lim inf condition:
For and any sequence γk ∈ P(Rd × Rd) such that γk ⇀ γ

K(γ) ≤ lim inf
k→∞

Kk(γk).
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• Γ − lim sup condition:
There exists a sequence (γk)k∈N such that γk ⇀ γ and

K(γ) ≥ lim sup
k→∞

Kk(γk).

We note that if (Kk)k∈N is equi-coercive and Γ−converges to K, then limk→∞ inf Kk =
inf K. Moreover if the minimizer γ of K is unique, then the sequence (γk)k∈N of
minimizers of Kk converges to γ. More details about Γ−convergence can be found in
[15].

It has been proven in [10] that the regularized functional Kε Γ -converges to K
as ε→ 0.

Theorem 5.2 ([10]) Given two probability measures on Rd µ and ν with finite
entropy and finite moment of order p > 1. Assume that the cost function is given by
c(x, y) = h(|x− y|) with |x|p ≤ h(x) ≤ |x|p + 1. Then Kε Γ -convergences towards K
as ε→ 0 with respect to narrow topology.

Here, we consider a variant of this problem where ε > 0 is fixed but where the
margins µ, ν are approximated by a family µη, νη (η > 0). We then introduce

Kη
ε (γ) =


∫
cdγ + εH2(γ) if γ ∈ Γ (µη, νη)

+∞ otherwise

and the associated minimization problems

inf
γ∈Γ (µ,ν)

Kε(γ) (5.2)

inf
γ∈Γ (µη ,νη)

Kη
ε (γ) (5.3)

A natural question one may ask is : Does the minima (and the minimizers) of Kη
ε

converge to the ones of Kε as η goes to zero ? A first remark is that this result is false
for arbitrary approximations (µη)η>0, (νη)η>0 of µ, ν. Indeed, if µη and νη are finitely
supported, then Kη

ε is constant equal to +∞! This motivates the introduction of
the so called block-approximation at scale η. From now on, we will work on [0, 1]d
instead of Rd.

Definition 5.3 (Block approximation) Given k ∈ Zd, η > 0, define Ck = ∏d
i=1[ki, ki+

1) and Cη
k = ηCk. Given a probability measure µ on Rd with finite second moment,

we consider the following block approximations of µ at scale η:

µη =
∑
j∈Zd

µ(Cη
j )

λ(Cη
j )1Cηj

We can easily check that µη ∈ Pac2 (Rd) with finite entropy.

Theorem 5.4 Fix a regularization parameter ε > 0, and let η > 0 be the param-
eter of discretization and let µη and νη be block approximations of µ, ν. Then Kη

ε

Γ−converges towards Kε as η → 0 with respect to narrow topology. Moreover, if γ
is the unique minimizer of Kε and γη is the unique minimizer of Kη

ε . Then γη ⇀ γ
as η goes to zero.
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The proof is divided in two steps. We start by establishing the Γ − lim inf
condition, which is somehow the easy part, and it follows mostly form the lower
semicontinuity of the entropy. To establish the Γ − lim sup condition, we consider a
solution γ of (5.2) and we construct its approximation γη at scale η in an appropriate
way so that Kε(γη) ≤ Kε(γ) + f(η) for some function f →

η→0
0.

Take a sequence (ηk)k tending to 0 as k goes to infinity. We shall prove that
limk→∞ infγη Kηk

ε (γ) = infγ∈Γ (µ,ν) Kε(γ). First, we start by showing the existence of
minimizers of (5.2).

Lemma 5.5 Suppose that γ ∈ P2(Rd × Rd) with bounded support. Then γ 7→ H2(γ)
is lower semicontinuous.

Proof. See [22, Proposition 7.7].

This gives the following:

Proposition 5.6 (Γ − lim inf condition) Let γk ∈ P(Rd × Rd) converging narrowly
to a certain γ ∈ P(Rd × Rd). Then

Kε(γ) ≤ lim inf
k→∞

Kε(γk)

where ηk → 0 as k →∞

Proof. It’s a direct consequence of the previous results. Particularly, lsc of γ 7→
∫
cdγ

and γ 7→ H2(γ), and narrow compactness of Γ (µ, ν).

Proposition 5.7 ([10]) Let µ, ν ∈ Pac2 (Rd) with finite entropy. Then, there exists
γ ∈ Γ ac(µ, ν) with finite entropy, minimizing (5.2).

Proof. This a direct consequence of narrow compactness of Γ (µ, ν), narrow lower
semi-continuity of γ →

∫
cdγ and lsc of the entropy H2.

The proof of the Γ -limsup part relies mainly on the two following lemmas.

Lemma 5.8 If γ ∈ Γ (µ, ν) and γη is its block approximation,

γη =
∑

j,k∈Zd
γ(Cη

j × C
η
k )

1Cηj
λ(Cη

j ) ⊗
1Cη

k

λ(Cη
k ) ,

then γη ∈ Γ (µη, νη).

Proof. Take a Borelian A ⊂ Rd, we have

γη(A× Rd) =
∑

j,k∈Zd
γ(Cη

j × C
η
k )
 1Cηj
λ(Cη

j ) ⊗
1Cη

k

λ(Cη
k )

(A× Rd
)

=
∑
j∈Zd

1Cηj ∩A
λ(Cη

j )
∑
k∈Zd

γ(Cη
j × C

η
k ) =

∑
j∈Zd

1Cηj ∩A
λ(Cη

j )µ(Cη
j )

= µη(A).
(5.4)

We verify similarly that γη(Rd × A) = νη(A).



26 5 ENTROPIC REGULARIZATION

Lemma 5.9 Let ρ ∈ Pac([0, 1]d) and ρη it’s approximation at scale η. Then∫
[0,1]d

ρ(x) log(ρ(x))dx ≥
∫

[0,1]d
ρη(x) log(ρη(x))dx.

Proof. It’s a direct consequence of Jensen inequality. Indeed, since r 7→ r log r is
convex, we have∫

[0,1]d
ρ log ρdx =

∑
j

∫
Cηj

ρ log ρdx ≥
∑
j

∫
Cηj

ρ(x)dx log
( ∫

Cηj

ρ(x)dx
)

=
∑
j

ρ(Cη
j )

1Cηj
λ(Cη

j ) log
(
ρ(Cη

j )
1Cηj
λ(Cη

j )

)
=
∫

[0,1]d
ρη(x) log(ρη(x))dx (5.5)

Corollary 5.10 We have
H2(γ) ≥ H2(γη)

Proposition 5.11 We have γη ⇀ γ as η → 0.

Proof. To do so, we only need to prove that W2(γη, γ) → 0 as η goes to zero,
where W2 is the 2-Wasserstein distance between γη and γ. As constructed before,
(Ci × Cj)(i,j)∈I×J is a countable partition of Rd × Rd, where I, J are countable sets
of indices. It is clear that supi,j diam(Ci × Cj) ≤ C with C a positive constant.
Moreover, since γ � Ld×d, with Ld×d is the Lebesgue measure on Rd × Rd, we have
γ(Ci×Cj) ≤ C̃η2, with C̃ is a constant depending only on the density of γ. Consider
Ĩ ⊂ I, and J̃ ⊂ J , such that γη(Ci × Cj) = γ(Ci × Cj) on Ĩ × J̃ . Define

γijη (A) = γη(A ∩ (Ci × Cj))
γη(Ci × Cj)

and γij(A) = γ(A ∩ (Ci × Cj))
γ(Ci × Cj)

.

for every Borelian A ⊂ Rd × Rd. Clearly, γijη , γij ∈ P2(Rd × Rd), and are supported
in Ci × Cj. Take Λ ∈ Γ (γijη , γij) such that supp(Λ) ⊂ (Ci × Cj)2. We have∫

(Rd×Rd)2
|x− y|2dΛ =

∫
(Ci×Cj)2

|x− y|2dΛ ≤ C2.

Define Λ̃ = ∑
(i,j)∈(Ĩ×J̃) γ(Ci × Cj)Λ. We can verify easily that Λ̃ is a transport plan

between γη and γ. Indeed, for every Borelian A ⊂ Rd × Rd we have

Λ̃((Rd × Rd)× A) =
∑
i,j

γ(Ci × Cj)Λ((Rd × Rd)× A) =
∑
ij

γ(Ci × Cj)γijη (A)

=
∑
ij

γη(A ∩ (Ci × Cj)) = γη(A). (5.6)

Similarly, we show that the other marginal is γ. Hence

W 2
2 (γη, γ) ≤

∫
|x− y|2dΛ̃ =

∑
ij

γ(Ci × Cj)
∫
|x− y|2dΛ . η2

So as η → 0, W 2
2 (γη, γ)→ 0, and narrow convergence follow.
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Lemma 5.12 Let γ, γη be respectively the optimal plans for (5.2) and (5.3). Then∫
cd(γ − γη)→ 0 as η → 0.

Proof. Since c is assumed to be 1-Lipschitz we have
∫
cd(γ − γη) ≤ W1(γ, γη), where

W1 is the 1-Wasserstein distance defined by

W1(γ, γη) = sup
φ 1−Lipschitz

∫
φd(γ − γη)

We know that W1(γη, γ) ≤ W2(γη, γ), hence by Proposition 1, W1(γη, γ) → 0 as η
goes to zero which implies that

∫
cdγη →

∫
cdγ as η → 0.

Proposition 5.13 (Γ − lim sup condition) There exists ηk → 0 as k →∞ such that

Kε(γ) ≥ lim supKηk
ε (γηk)

Proof. For every no-negative sequence (ηk)k converging to zero, γηk ⇀ γ. Using the
previous results we have H2(γηk) ≤ H2(γ). By the lemma 4.3.6

∫
cdγηk →

∫
cdγ, we

deduce that
lim sup
k→∞

∫
cdγηk +H2(γηk) ≤

∫
cdγ +H2(γ).

ad desired.

Remark 5.14 The problem (5.3) is not fully discrete since we are minimizing on
γ ∈ Γ (µη, νη). To make it a fully discrete problem, one has to add the following
functional

F η(γ) =

0 if γ = ∑
ij γij1Cηi ⊗ 1Cηj

+∞ if not

The problem becomes an optimization problem in finite dimension with unknown γij .
Using the same arguments as before, we can show that the minimizers of Kη

ε + F η

converge to the minimizers of Kε as η → 0.

5.3 Fully discrete setting
We go back to the "standard" Kantorovich problem, i.e, the two marginal problem
with µ ∈ Rn, µ ∈ Rn, γ ∈ Rn×n

(KP2) : inf
γ∈Γ (µ,ν)

{
K(γ) =

∫
X×Y

cdγ
}

(5.7)

which is a linear optimization problem. So it is important to look at it discretiza-
tion. We replace µ and ν by a finite combination of Dirac masses:

µ =
n∑
i=1

αiδxi , ν =
n∑
i=1

βiδyi .

where αi, βi are non-negative numbers and for simplicity we have assumed that
X = {x1, · · · , xn} and Y = {y1, · · · , yn} have the same cardinality n. Suppose that
we are transferring mass aij ≥ 0 form xi to yj . Then transport plans are of the form
γ = ∑n

i,j=1 aijδxi ⊗ δyj . Since we send all the mass at xi, we must have ∑i=1 aij = αi,
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and since the mass transported to yj must be equal to the original mass at yj, we
have ∑j=1 aij = βj. Every transport plan costs ∑n

i,j=1 aijcij where cij = c(xi, yj).
The discrete Kantorovich problem writes

(DisKP) : inf
γ∈Γn(µ,ν)

{ n∑
i,j

cijγij

}
(5.8)

where Γ (µ, ν) = {γ ∈ Rn × Rn, γij ≥ 0,∑j=1 γij = αi,
∑
i=1 γij = βj}

Remark 5.15 The dual problem of 5.8 which can be obtained similarly to the
continuous setting. We have

min
γ∈Γ (µ,ν)

∑
ij

γijcij = min
γ∈Γ (µ,ν)

max
φ,ψ∈Rn

∑
ij

γijcij +
∑
i

(
αi −

∑
j

γij

)
φi +

∑
j

(
βj −

∑
i

γij

)
ψj

= min
γ∈Γ (µ,ν)

max
φ,ψ∈Rn

∑
ij

γij(cij − φi − ψj) +
∑
i

αiφi +
∑
j

βjψj

= max
φ,ψ, φ⊕ψj≤c

∑
i

αiφi +
∑
j

βjψj

where φ⊕ ψ ≤ c means that φi + ψj ≤ cij for all i, j = 1, · · · , n.
To define the entropic regularization of (5.8), we define the discrete entropy by

E(γ) =


γ(log(γ)− 1), if γ ≥ 0
0 if γ = 0
+∞ if not

(5.9)

and we consider, for fixed ε, the following penalized problem

(KPε) : min
γ∈Γ (µ,ν)

{∑
ij

cijγij + εE(γĳ)
}

(5.10)

The entropic regularization allows to get ride of the positivity constraint on γ.
Moreover, this problem becomes a problem of projection the constraint subspaces
{∑i=1 γij = µi} and {

∑
j=1 γij = νj}, and as we will see in the following sections, we

can compute explicitly the projections.
Remark 5.16 • The regularized problem (KPε) has a unique solution γε. More-

over, if the solution γ of the non-regularised problem is unique then we have
γε → γ as ε goes to zero. Moreover, the convergence is exponential:

‖γε − γ‖Rd×Rd ≤ ke−λ/ε

where k and λ depend on the cost function, the marginals mu and ν, and the
discretization number n. More details can be found in [12].

• If the non-regularized problem has more than one solution, then γε converges
to the one with minimal entropy as ε goes to zero [14, Proposition 2.1].

• When ε → ∞, we find that γε = µ ⊗ ν. Indeed, ifγε is the minimizer of the
regularized problem then

γε = argminγ∈Γ (µ,ν)KL(γ | γ̄)

with γ̄ = e−c/εµ⊗ν, and hence ∂KL(γε|γ̄)
∂γε

= 0. This gives γε = e−c/εµ⊗ν → µ⊗ν
as ε goes to ∞.



5.4 ALGORITHMS AND NUMERICAL RESULTS 29

5.4 Algorithms and Numerical Results
In this section we present some algorithms used to solve regularized OT problems.
We distinguish two points of view: geometric projection vs dual optimization point
of view. In the first category we handle transport plans, i.e, we are dealing with the
primal transport problem. Whereas in the second category we deal with the dual
problem, and so we handle Kantorovich potentials. We present this in details and
we will show the advantages and the drawbacks of each method.

5.4.1 Geometric projection point of view

Given γ ∈ Rd×d+ and ξ ∈ Rd×d+∗ , i.e, ξij > 0 for all i, j, we define the Kullback-Leibler
divergence between γ and ξ by

KL(γ | ξ) =
d∑

i,j=1
γij

(
log(γij

ξij
)− 1

)
.

If C is a convex subset of Rd×d, the projection according to the KL divergence is
defined as

PKLC = argminγ∈CKL(γ | ξ)

Optimal transport The next lemma shows that the regularized optimal transport
problem is equivalent to the computation of the projection of some density (Gibbs
kernel) on the intersection of some convex sets with respect to the KL−divergence.

Lemma 5.17 [3]

• The regularized optimal transport problem (5.10) can be rewritten in the form

min
γ∈C

KL(γ | ξ), C = ∩2
i=1Ci. (5.11)

where ξij = e−cij/ε and where the Ci are the affine subspaces of Rd×d defined by

C1 = {γ ∈ Rd×d+ , γ1 = µ}, C2 = {γ ∈ Rd×d+ , γ†1 = ν}.

with 1 = (1, · · · , 1)† ∈ Rn and γ1 is a matrix-vector product.

PKLC1 (γ) = diag
(
µ

γ1

)
γ, and PKLC2 (γ) = γdiag

(
ν

γ†1

)
.

While there are explicit formulas for the projection on C1 and C1, it is not as
straightforward to project ξ on C1 ∩C2. The KL-projection on the intersection of two
affine subspaces can however be computed using the alternating projection algorithm:

γ0 := ξ

γ(n) = PKLC1 (γ(n−1)) for n odd ,
γ(n) = PKLC2 (γ(n−1)) for n even ,
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This procedure is illustrated by Figure 4, and it is possible to prove [5] that as
n→∞, γ(n) converges to PKLC (ξ), i.e. the unique solution of (5.11). Figure 2 shows
the transport plans computed by this algorithm for various values of ε.

Figure 2: Regularized Transport for different values of the regularization parameters

We verify that the regularized is sufficiently close to the initial marginals.

Figure 3: The error ‖1γ − µ‖ and ‖γ†1− ν‖ at log(10) scale

Remark 5.18 Combining this formulas with the Iterative Bregman Projection
(affine case), we find that the iterates satisfy

γ(n) = diag(a(n))ξdiag(b(n)).

with (a(n), b(n)) ∈ Rd × Rd satisfies b(0) = 1 and

a(n) = µ

ξb(n)
, and b(n+1) = ν

ξ†a(n)
.
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Figure 4: The projection of Gibbs kernel ξ on the intersection of two convex sets (in
red and blue).

and this is a "transport plan version" of Sinkhorn-Knopp’s algorithm which will be
introduced in the next section.

Remark 5.19 The KL-divergence is a particular case of the notion of a divergence
induced by an entropy functional wich is a convex lower semi-continuous function φ
such that domφ ⊂ [0,∞[ and domφ ∩ [0,∞[ 6= ∅. The speed of growth of φ at ∞ is
defined by

φ
′

∞ = lim
x→+∞

φ(x)
x
∈ R ∪ {∞}.

Given an entropy φ and two measures µ and ν on Rd, we suppose that the Lebesgue
decomposition of µ with respect to ν is dµ

dν
ν + µ⊥. The divergence induced by φ is

defined by

Dφ(µ | ν) =


∫

Rd φ
(
dµ
dν

)
dν + φ

′
∞µ
⊥(Rd) if µ, ν are non− negative.

∞ otherwise.

We can easily see that the KL-divergence is associated to the entropy function

φKL(s) =


s log(s)− s+ 1, if s > 0.
1 if s = 0.
∞ otherwise.

Partial optimal transport In the case of partial transport we start with two
marginals µ, ν ∈ Rd+ and we wish to transport a mass portion 0 ≤ m ≤ min(µ†1, ν†1).
The corresponding regularized problem reads

min
γ∈Rd+

< c | γ > +εE(γ), with γ1 ≤ µ, γ†1 ≤ ν, 1†γ1 = m. (5.12)

We follow the same strategy as before, rewriting this problem as the KL-projection
on the intersection of a family of convex subsets of Rd×d.
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Lemma 5.20 [3] The regularized optimal partial transport problem (5.12) can be
rewritten in the form

min
γ∈C

KL(γ | ξ), C = ∩3
i=1Ci.

with ξ = e−c/ε and

C1 = {γ ∈ Rd+, γ1 ≤ p}, C2 = {γ ∈ Rd+, γ
†1 ≤ q}, C3 = {γ ∈ Rd+, 1

†γ1 = m}.

Moreover we have explicit formulas for the projection PKLCi :

PKLC1 (γ) = diag
(

min( µ
γ1
, 1)

)
γ, PKLC2 (γ) = γdiag

(
min( ν

γ†1
, 1)

)
, PKLC3 (γ) = γ

m

1†γ1
.

with min(x, y) , (min(xi, yi))i.

Since the Ci are not all affine subspaces, the alternating projection algorithm
doesn’t converge in general to PKLC (ξ). Fortunately, an extension of Dykstra’s algo-
rithm [16] to the KL setting convergences to the projection. This can be done as
follows: 

γ0 := ξ, q(0) = q(−1) = · · · = q(−k+1) = 1.

γ(n) = PKLCn (γn−1 � qn−k).
q(n) = q(n−k) �

γ(n−1)
γ(n)

.

Ci+3k = Ci for i = 1, 2, 3 and k ∈ N.

With x � y = (xiyi)i ∈ Rd and x
y

=
(
xi
yi

)
i
∈ Rd, for x, y ∈ Rd. We note that

Dykstra’s algorithm is used in the two cases: m = 1 and m < 1. Moreover, we can
prove [2] that γ(n) → PKLC as n→∞. Figure 5 shows the solution computed via this
algorithm.

Figure 5: The solution of the partial transport between two Gaussians
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Figure 6: The error ‖1γ − µ‖ and ‖γ†1− ν‖ at log(10) scale

Figure 7: The marginals of the computed solution to the partial problem (In green)
plotted alongside with µ and ν.

5.4.2 Dual Optimization point of view

In this section we start from a regularized optimal transport problem and we derive
its dual formulation. This makes Kantorovich potentials appear, and thanks to
the algebraic properties of the entropy, the dual problem is solved by maximizing
alternatively in the potentials. This approach is privileged since handling potentials
is numerically easier that using transport plans which appear need more memory,
and the algebraic operations are more complicated (in the case of N = 3 marginals
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we deal with a 3−tensor). Let γ ∈ Rn×n, we define the discrete entropy by

E(γ) =


γ(log(γ)− 1), if γ ≥ 0
0 if γ = 0
+∞ if not

(5.13)

For ε > 0 we consider the following penalized problem

(KPε) : min
γ∈Γ (µ,ν)

{∑
ij

cijγij + εE(γĳ)
}

(5.14)

To obtain the dual problem, we take φ, ψ ∈ Rn to express the two marginal constraints:

min
γ∈Γ (µ,ν)

{∑
ij

cijγij + εE(γ)
}

= min
γij

sup
φi,ψj

∑
ij

γijcij + εE(γij)

+
∑
i

(
∑
j

µi − γij)φi +
∑
j

(
∑
i

νj − γij)ψj (5.15)

by interchanging the inf-sup we obtain

(KPε) = sup
φi,ψj

min
γij

∑
ij

γijcij + εE(γij)

+
∑
i

(
∑
j

µi − γij)φi +
∑
j

(
∑
i

νj − γij)ψj (5.16)

We can obtain an explicit formula of the optimal plan γ in terms of c, φ, ψ, by taking
the derivative with respect to γij:

cij + ε∂γijE(γij)− φi + ψj = 0

i.e, γij = exp(φi+ψj−cij
ε

). We plug theses values in (KP↑) to get the dual problem:

(DKε) sup
φ,ψ∈Rn

Ψε(φ, ψ) (5.17)

wherer Ψε(φ, ψ) =
{∑n

i=1 φiµi + ∑n
j=1 ψjµj − ε

∑n
i,j=1 exp(φi+ψj−cij

ε
)
}
. For ψ ∈ Rn,

the maximizer of Ψε(., ψ) can be obtained by taking the derivative of Ψε with respect
to φ:

∂φiΨε(φ, ψ) = µi −
n∑
j

exp(φi + ψj − cij
ε

) = 0, ∀i = 1, · · · , n

So we obtain that:
φi
ε

= log(µi)− log
( n∑

j

exp(ψj − cij
ε

)
)
, ∀i = 1, · · · , n.

and similarly by fixing φ ∈ Rn and taking the derivative with of Ψε with respect to ψ
we obtain:

ψj
ε

= log(νj)− log
( n∑

i

exp(φi − cij
ε

)
)
, ∀j = 1, · · · , n.
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Before introducing the Sinkhorn-Knopp algorithm which allows us to solve the
dual problem (KPε) my maximizing alternatively Ψε in φ and ψ. We recall that
duo to strict convexity of ∑ij cijγij + εE(γij) the solution γ of (KPε) is necessarily
unique, and form the previous computations it’s characterized by solving the equation
cij + ε log(γij)− φi − ψj = 0. In other words γij = exp(φi/ε) exp(−cij/ε) exp(ψj/ε)
for i, j = 1, · · · , n. Using the marginal constraints ∑j γij = µi,

∑
i γij = νj, we find

that the Kantorovich potentials φ and ψ are uniquely determined by

ai , exp(φi/ε) = µi/(
∑
j

exp(−cij/ε))bj

bj , exp(ψj/ε) = νj/(
∑
i

exp(−cij/ε))ai.

We define as before Gibbs kernel Gε defined by

Gε : Rn −→ Rn

ξ 7−→ ∑n
j=1 exp(−cij/ε)ξj, ∀i = 1, · · · , n

and similarly it’s adjoint can be defined as

G†ε : Rn −→ Rn

ζ 7−→ ∑n
i=1 exp(−cij/ε)ζj,∀j = 1, · · · , n

Finally, the Sinkhorn-Knopp algorithm is given by:

Algorithm 1 Sinkhorn-Knopp algorithm
function S-K(µ, ν,Gε)

a0 ← 1{1,··· ,n}, b0 ← 1{1,··· ,n}
for 0 ≤ k ≤ kmax do

ak+1 ← µ/Gεbk
bk+1 ← ν/G†εak

end for
end function

Figure 8 displays examples of transport plans γε solving the regularized optimal
transport problem where each measure µ, ν is the sum of two Gaussian densities
with N = 200 and as a cost cij = |i− j|2.
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Figure 8: The solution γε for several values of ε.

Figure 9: The two marginals µ and ν
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6 Appendix
The most known version of Prokhorov’s theorem makes a link between tightness
of measures to compactness in the space of probability measures. We give here a
more general version of this theorem which gives conditions for compactness in the
weak topology σ(M, Cb(X))) of families of measures. This result can be found in [4]
and we give it here for completeness and because it is not often presented in a such
general way in the literature on optimal transport.

Theorem 6.1 Les X be a compact metric space and let F be a family of Borel
measures on X. Then the following conditions are equivalent:

• Every sequence (µm) ⊂ F contains a weakly convergent subsequence.

• F is uniformly tight and uniformly bounded in the variation norm.
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