Variational approximation and finite elements

Exercise 1

Let $f \in C^0([0,1])$, $k \in C^1([0,1])$ such that k(x) > 0 for all $x \in [0,1]$ and a > 0. We consider the following problem

(P):
$$-(k(x)u'(x))' + au(x) = f(x)$$
, in]0,1[, $u(0) = 0$ and $k(1)u'(1) = 1$.

- 1. Write the variational formulation associated to (P) using an appropriate Hilbert space V.
- 2. We now consider a uniform discretization $(x_i)_{i=0,...,N}$ of the domain [0,1], made of N intervals of length $h = \frac{1}{N}$. Let V_h be the subspace of V made of continous functions in [0,1] such that the restriction to each interval $[x_i, x_{i+1}]$ is a polynomial function of degree 1 (\mathbb{P}_1 approximation).
 - (a) Determinate the dimension of V_h and define the basis functions.
 - (b) Write the discrete variational formulation.
 - (c) Write the final linear system to solve, making explicit the different coefficients.
- 3. Explain how to treat a non homogeneous Dirichlet condition u(0) = b ($b \in \mathbb{R}$).

Exercise 2

Let Ω be the unit square $[0, 1] \times [0, 1]$. We consider the variational problem:

Find
$$u \in H_0^1(\Omega)$$
 such that $\int_{\Omega} \left(\partial_x u \partial_x v + \partial_y u \partial_y v \right) dx dy = \int_{\Omega} v dx dy, \quad \forall v \in H_0^1(\Omega).$

We divide Ω into four triangles as illustrated in the following figure:

We denote u_h the approximate solution of u obtained by a \mathbb{P}^1 finite element method using this triangularization. We emphasize that it is very simple discretization and that it cannot be used to solve an industrial problem.

- 1. Define the approximate space V_h and show that it is a space of dimension 1.
- 2. Let ω be the unique function in V_h that has a value equal to 1 in E. We write $u_h = U\omega$ with $U \in \mathbb{R}$. Determinate the coefficients a and b (depending on ω) such that the problem to solve is the linear equation aU = b.
- 3. Compute a and b. Deduce that $U = \frac{1}{12}$.

Exercise 3

Let N be a positive integer and Ω the rectangle from \mathbb{R}^2 with vertices (0,0), (0,2), (2N,0) and (2N,2)(see figure below). We consider the variational problem: to find $u \in H_0^1(\Omega)$, such that

$$\forall v \in H_0^1(\Omega), \quad \int_\Omega \left(\partial_x u \partial_x v + \partial_y u \partial_y v \right) dx dy = \int_\Omega v dx dy.$$

We take for granted that this problem has a unique solution. We propose to approach numerically the solution u by the finite element method based on triangular \mathbb{P}^1 elements, on the mesh:

- 1. Define the approximation space V_N . What is its dimension?
- 2. Give explicitly a basis of V_N .
- 3. Find the explicit numerical solution of the approximated problem.