Variational approximation and finite elements

Exercise 1

Let $f \in C^{0}([0,1]), k \in C^{1}([0,1])$ such that $k(x)>0$ for all $x \in[0,1]$ and $a>0$. We consider the following problem

$$
\left.(P): \quad-\left(k(x) u^{\prime}(x)\right)^{\prime}+a u(x)=f(x), \text { in }\right] 0,1\left[, \quad u(0)=0 \quad \text { and } \quad k(1) u^{\prime}(1)=1 .\right.
$$

1. Write the variational formulation associated to (P) using an appropriate Hilbert space V.
2. We now consider a uniform discretization $\left(x_{i}\right)_{i=0, \ldots, N}$ of the domain $[0,1]$, made of N intervals of length $h=\frac{1}{N}$. Let V_{h} be the subspace of V made of continous functions in $[0,1]$ such that the restriction to each interval $\left[x_{i}, x_{i+1}\right]$ is a polynomial function of degree 1 (\mathbb{P}_{1} approximation).
(a) Determinate the dimension of V_{h} and define the basis functions.
(b) Write the discrete variational formulation.
(c) Write the final linear system to solve, making explicit the different coefficients.
3. Explain how to treat a non homogeneous Dirichlet condition $u(0)=b(b \in \mathbb{R})$.

Exercise 2

Let Ω be the unit square $] 0,1[\times] 0,1[$. We consider the variational problem:

$$
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \int_{\Omega}\left(\partial_{x} u \partial_{x} v+\partial_{y} u \partial_{y} v\right) d x d y=\int_{\Omega} v d x d y, \quad \forall v \in H_{0}^{1}(\Omega) .
$$

We divide Ω into four triangles as illustrated in the following figure:

We denote u_{h} the approximate solution of u obtained by a \mathbb{P}^{1} finite element method using this triangularization. We emphasize that it is very simple discretization and that it cannot be used to solve an industrial problem.

1. Define the approximate space V_{h} and show that it is a space of dimension 1 .
2. Let ω be the unique function in V_{h} that has a value equal to 1 in E. We write $u_{h}=U \omega$ with $U \in \mathbb{R}$. Determinate the coefficients a and b (depending on ω) such that the problem to solve is the linear equation $a U=b$.
3. Compute a and b. Deduce that $U=\frac{1}{12}$.

Exercise 3

Let N be a positive integer and Ω the rectangle from \mathbb{R}^{2} with vertices $(0,0),(0,2),(2 N, 0)$ and $(2 N, 2)$ (see figure below). We consider the variational problem: to find $u \in H_{0}^{1}(\Omega)$, such that

$$
\forall v \in H_{0}^{1}(\Omega), \quad \int_{\Omega}\left(\partial_{x} u \partial_{x} v+\partial_{y} u \partial_{y} v\right) d x d y=\int_{\Omega} v d x d y
$$

We take for granted that this problem has a unique solution. We propose to approach numerically the solution u by the finite element method based on triangular \mathbb{P}^{1} elements, on the mesh:

1. Define the approximation space V_{N}. What is its dimension ?
2. Give explicitly a basis of V_{N}.
3. Find the explicit numerical solution of the approximated problem.
