Unisolvent finite elements

Exercise 1

Let K be the square $K=[0,1] \times[0,1]$ with the following nodes: the four vertices and its center.

We consider the linear space $\mathcal{P}=\operatorname{span}\left\{1, x, y, x y, y^{2}, x^{2}\right\}$ and the set of linear forms on \mathcal{P} given by:

$$
\Sigma=\left\{p \rightarrow p\left(A_{1}\right), p \rightarrow p\left(A_{2}\right), p \rightarrow p\left(A_{3}\right), p \rightarrow p\left(A_{4}\right), p \rightarrow p\left(A_{5}\right), p \rightarrow \int_{K} p(x, y) d x d y\right\}
$$

Is the finite element $\{K, \Sigma, \mathcal{P}\}$ unisolvent? Depending on your answer, find a non zero element of \mathcal{P} cancelling all forms of Σ, or find the corresponding basis functions.

Exercise 2

Let K be a triangle with vertices a_{1}, a_{2}, a_{3}. We denotes $a_{i j}$ (for $1 \leq i<j \leq 3$) the middle of the edges [a_{i}, a_{j}] and we define by $a_{i i j}=\left(2 a_{i}+a_{j}\right) / 3$ (for $1 \leq i \neq j \leq 3$) the six points placed on the edges in order to divide them into three uniform intervals. Let $S_{1}=\left\{a_{i j}\right\}_{1 \leq i<j \leq 3}$ and $S_{2}=\left\{a_{i i j}\right\}_{1 \leq i \neq j \leq 3}$.
For $k=1,2$, is the set $S_{k} \mathbb{P}_{k}$-unisolvent ? If yes, express the basis functions of the finite element $\left\{K, \mathbb{P}_{k}, S_{k}\right\}$ using the barycentric coordinates.

Exercise 3

Let K be a triangle with vertices a_{1}, a_{2}, a_{3}. We denotes $a_{i j}$ (for $1 \leq i<j \leq 3$) the middle of the edges and a_{0} the triangle barycenter. We denotes λ_{i}, for $i=1,2,3$, the barycentric coordinates and we consider the space

$$
\mathcal{P}=\operatorname{span}\left\{\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}, \lambda_{1} \lambda_{2}, \lambda_{1} \lambda_{3}, \lambda_{2} \lambda_{3}, \lambda_{1} \lambda_{2} \lambda_{3}\right\} .
$$

Finally, Σ is the set of linear functionals in \mathcal{P} that assign to $a_{i}, a_{i j}$ and a_{0} (7 points in total) the values of the unknown function. Is the finite element $\{K, \Sigma, \mathcal{P}\}$ unisolvent ? Depending on your answer, find a non zero function in \mathcal{P} that vanishes for all the elements in Σ or find the basis functions of this finite element.

