Unisolvent finite elements

Exercise 1

Let K be the square $K = [0, 1] \times [0, 1]$ with the following nodes: the four vertices and its center.

We consider the linear space $\mathcal{P} = \text{span}\{1, x, y, xy, y^2, x^2\}$ and the set of linear forms on \mathcal{P} given by:

$$\Sigma = \left\{ p \to p(A_1), p \to p(A_2), p \to p(A_3), p \to p(A_4), p \to p(A_5), p \to \int_K p(x, y) dx dy \right\}.$$

Is the finite element $\{K, \Sigma, \mathcal{P}\}$ unisolvent? Depending on your answer, find a non zero element of \mathcal{P} cancelling all forms of Σ , or find the corresponding basis functions.

Exercise 2

Let K be a triangle with vertices a_1, a_2, a_3 . We denotes a_{ij} (for $1 \le i < j \le 3$) the middle of the edges $[a_i, a_j]$ and we define by $a_{iij} = (2a_i + a_j)/3$ (for $1 \le i \ne j \le 3$) the six points placed on the edges in order to divide them into three uniform intervals. Let $S_1 = \{a_{ij}\}_{1\le i < j \le 3}$ and $S_2 = \{a_{iij}\}_{1\le i \ne j \le 3}$. For k = 1, 2, is the set $S_k \mathbb{P}_k$ -unisolvent? If yes, express the basis functions of the finite element $\{K, \mathbb{P}_k, S_k\}$ using the barycentric coordinates.

Exercise 3

Let K be a triangle with vertices a_1, a_2, a_3 . We denotes a_{ij} (for $1 \le i < j \le 3$) the middle of the edges and a_0 the triangle barycenter. We denotes λ_i , for i = 1, 2, 3, the barycentric coordinates and we consider the space

$$\mathcal{P} = \operatorname{span} \left\{ \lambda_1^2, \, \lambda_2^2, \, \lambda_3^2, \, \lambda_1 \lambda_2, \, \lambda_1 \lambda_3, \, \lambda_2 \lambda_3, \, \lambda_1 \lambda_2 \lambda_3 \right\}.$$

Finally, Σ is the set of linear functionals in \mathcal{P} that assign to a_i , a_{ij} and a_0 (7 points in total) the values of the unknown function. Is the finite element $\{K, \Sigma, \mathcal{P}\}$ unisolvent? Depending on your answer, find a non zero function in \mathcal{P} that vanishes for all the elements in Σ or find the basis functions of this finite element.