Variational formulations and Lax-Milgram theorem for one dimensional problems

Exercise 1

Let $f \in L^{2}(0,1)$, we consider the following equation on $(0,1)$:

$$
-u^{\prime \prime}(x)+u(x)=f(x) .
$$

For each set of boundary conditions below, write a variational formulation with its appropriate functional space, identify the bilinear an linear forms involved, and study the equivalence between variationnal and classical solutions :

1. $u(0)=u(1)=0$.
2. $u(0)=0, u(1)=1$.
3. $u^{\prime}(0)=0, u^{\prime}(1)=1$.
4. $u^{\prime}(0)+2 u(0)=0, u(1)=0$.

Exercise 2

We consider the problem

$$
\left.(P): \quad-\left(\left(1+x^{2}\right) u^{\prime}\right)^{\prime}+x u=f, \text { in }\right] 0,1[, \quad u(0)=u(1)=0,
$$

where $f \in C^{0}([0,1])$.

1. What does it mean that u is a strong solution of (P) ?
2. Write a variational formulation (Q) associated to the problem (P).
3. Show that (Q) has a unique solution.
4. Does the solution of (Q) is also a strong solution of (P) ?
5. How will you treat the problem

$$
\left.\left(P_{2}\right): \quad-\left(\left(1+x^{2}\right) u^{\prime}\right)^{\prime}+x u=f, \text { in }\right] 0,1\left[, \quad u(0)=u_{0} \text { and } u(1)=u_{1},\right.
$$

where u_{0} and u_{1} are two real numbers?

Exercise 3

Solve the problem : Find $u \in H_{0}^{1}(0,1)$ such that

$$
\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x=v\left(\frac{1}{2}\right), \quad \forall v \in H_{0}^{1}(0,1) .
$$

Is the solution in $H^{2}(0,1)$?
For $v \in H^{1}(0,1)$, we remind that $v(y)=v(x)+\int_{x}^{y} v^{\prime}(t) d t$ for all $(x, y) \in[0,1]^{2}$. A consequence is that it exists $C>0$ such that for all $v \in H^{1}(0,1), \sup _{y \in[0,1]}|v(y)| \leq C\|v\|_{H^{1}(0,1)}$ (see Exercise 2 of previous exercise sheet).

Exercise 4

Let $f \in L^{2}(0,1)$ such that $\int_{0}^{1} f(x) d x=0$. We consider the problem

$$
\left.(P): \quad-u^{\prime \prime}=f, \quad \text { in }\right] 0,1\left[, \quad u^{\prime}(0)=u^{\prime}(1)=0 \quad \text { and } \quad \int_{0}^{1} u(x) d x=0\right.
$$

1. Discuss why we assume $\int_{0}^{1} f(x) d x=0$ and why we add the condition $\int_{0}^{1} u(x) d x=0$.
2. Write a variational formulation (Q) associated to (P), introducing the space

$$
H_{m}^{1}(0,1)=\left\{v \in H^{1}(0,1), \int_{0}^{1} v(x) d x=0\right\}
$$

3. Show that (Q) has a unique solution. For that, you need to prove the Poincaré-Wirtinger inequality which says that it exists a constant $C>0$, such that

$$
\|u\|_{L^{2}} \leq C\left\|u^{\prime}\right\|_{L^{2}}, \quad \forall u \in H_{m}^{1}(0,1) .
$$

4. Prove that (P) admits a unique solution in $H^{2}(0,1)$.

Exercise 5

Let $p, q \in C^{1}([0,1]), r \in C^{0}([0,1])$ and $f \in L^{2}(0,1)$. We also assume that $r(x) \geq 0$ for all $x \in[0,1]$ and that there exists $\alpha>0$ such that $p(x) \geq \alpha$ for all $x \in[0,1]$. We consider the problem

$$
\left.(P): \quad-\left(p u^{\prime}\right)^{\prime}+q u^{\prime}+r u=f, \text { in }\right] 0,1[, \quad u(0)=u(1)=0 .
$$

1. Write a variational formulation (Q) associated to (P) introducing a bilinear form that is not symmetric.
2. Show for instance that if q is a decreasing function then the problem (Q) has a unique solution.

Notice that instead of assuming that q is a decreasing function, we could for instance make an hypothesis such that $\|q\|_{\infty} \leq \alpha$. However, there exists some q for which the Lax-Milgram theorem cannot be applied (for instance $q(x)=\lambda x$ with $\lambda \in \mathbb{R}$ positive enough).
3. To avoid the hypothesis done in the previous question, we will write a variational formulation that has a symmetric bilinear form, introducing

$$
h(x)=e^{-\int_{0}^{x} \frac{q(y)}{p(y)} d y} .
$$

(a) Show that (P) can be rewritten

$$
-\left(h p u^{\prime}\right)^{\prime}+h r u=h f, \quad u(0)=u(1)=0 .
$$

(b) Deduce another variational formulation $(Q 2)$ associated to (P).
(c) Show that ($Q 2$) has a unique solution.
(d) Prove that (P) admits a unique solution in $H^{2}(0,1)$.

Exercise 6 (Exam '18)

Let $p \in \mathbb{R}$, and $f \in L^{2}(0,1)$. We consider the following $1 D$ problem :

$$
(S)\left\{\begin{array}{l}
\left.-u^{\prime \prime}+u=f, \quad \text { on }\right] 0,1[, \\
u(0)=u(1), \\
u^{\prime}(0)=u^{\prime}(1)+p
\end{array}\right.
$$

We set $V=\left\{u \in H^{1}(0,1), u(0)=u(1)\right\}$.
Course webpage: http://caseine.org/course/view.php?id=225

1. Show that a $H^{2}(0,1)$ solution of (S) is solution of the following variational formulation :

$$
(V F) \quad \text { Find } u \in V, \quad \forall v \in V, \quad \int_{0}^{1}\left(u^{\prime}(x) v^{\prime}(x)+u(x) v(x)\right) d x=\int_{0}^{1} f(x) v(x) d x-p v(0) .
$$

2. For $v \in H^{1}(0,1)$, we remind that $v(y)=v(x)+\int_{x}^{y} v^{\prime}(t) d t$ for any $(x, y) \in[0,1]^{2}$. Show there exists $C>0$ such that for all $v \in H^{1}(0,1), \sup _{y \in[0,1]}|v(y)| \leq C\|v\|_{H^{1}(0,1)}$.
3. Show existence and uniqueness of u verifying $(V F)$.
4. Prove that this solution belongs to $H^{2}(0,1)$.
5. Deduce that (S) has a unique $H^{2}(0,1)$ solution.
