Refresher in distributions theory : Hints

Exercise 1 (Partial derivatives and Green formula) Let $u(x, y) = \ln\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$ and $r = \sqrt{x^2 + y^2}$.

We denote by B_r the open ball centered in 0 with radius r and $\Omega_{\epsilon} = B_1 \setminus \overline{B}_{\epsilon}$. We aim at computing Δu in $\mathcal{D}'(B_1)$.

- 1. Compute $\Delta u(x, y)$ for $(x, y) \neq 0$. We get $\partial_x u = -x/r^2$ and $\partial_{xx} u = (x^2 - y^2)/r^4$. Similarly $\partial_{yy} u = (y^2 - x^2)/r^4$, so that $\Delta u = 0$.
- 2. For $\varphi \in \mathcal{D}(B_1)$, we set

$$I_{\varepsilon} = \int_{\Omega_{\varepsilon}} u \triangle \varphi \, \mathrm{d}x \mathrm{d}y.$$

Compute I_{ϵ} . Using twice Green's formula, we get

$$I_{\epsilon} = -\int_{\partial\Omega_{\epsilon}} \nabla u \cdot \mathbf{n} \varphi \, \mathrm{d}\sigma + \int_{\partial\Omega_{\epsilon}} u \, \nabla\varphi \cdot \mathbf{n} \, \mathrm{d}\sigma.$$

Using the fact that $\partial \Omega_{\epsilon} = S(0,1) \cup S(0,\epsilon)$ and that, on $S(0,\epsilon)$, the unit exterior normal writes $\mathbf{n} = -\mathbf{x}/\|\mathbf{x}\| = -\mathbf{x}/r$, with $\mathbf{x} = (x, y)^T$, it leads to

$$I_{\epsilon} = \underbrace{-\frac{1}{\epsilon} \int_{S(0,\epsilon)} \varphi \, \mathrm{d}\sigma}_{I_{\epsilon}^{1}} + \underbrace{\frac{\ln(\epsilon)}{\epsilon} \int_{S(0,\epsilon)} \nabla \varphi \cdot \mathbf{x} \, \mathrm{d}\sigma}_{I_{\epsilon}^{2}}.$$

Compute lim_{ϵ→0} I_ϵ. Deduce the expression of Δu in D'(B₁).
We prove that I²_ϵ → 0 as ϵ → 0, and using the mean-value theorem we show that I¹_ϵ → -2πφ(0,0) as ϵ → 0 (to obtain this limit, you could also use polar coordinates and the dominated convergence theorem). So that I_ϵ → -2πφ(0,0) as ϵ → 0. Consequently, Δu = -2πδ_(0,0) in D'(B₁).

Exercise 2 (Heat Kernel) 1. Let $f \in L^1(\mathbb{R})$, and set, for $\varepsilon > 0$, $f_{\varepsilon}(x) = \varepsilon^{-1} f(x/\varepsilon)$. Determine $\lim_{\varepsilon \to 0} f_{\varepsilon}$ in the sense of distributions.

Using Lebesgue's dominated convergence theorem and making the change of variable $y = \frac{x}{\varepsilon}$, we prove that, for any $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\langle T_{f_{\epsilon}}, \varphi \rangle \to \left(\int_{\mathbb{R}} f(y) \mathrm{d}y \right) \langle \delta_0, \varphi \rangle \text{ as } \epsilon \to 0.$$

- 2. Let $u(t,x) = \frac{1}{(4\pi t)^{1/2}} \exp\left(\frac{-x^2}{4t}\right)$. Show that u solves the heat equation $\partial_t u(t,x) = \partial_{xx} u(t,x)$, for $t \in]0, +\infty [, x \in \mathbb{R}$. Direct computations give $\partial_t u(t,x) = \left(\frac{x^2}{4t^2} - \frac{1}{2t}\right) u(t,x)$ for t > 0 and $x \in \mathbb{R}$. Same result for $\partial_{xx} u(t,x)$.
- 3. Determine the distributional limits : lim_{t→0} u(t, x) and lim_{t→0} ∂_tu(t, x). Deduce the PDE satisfied by v in D'(ℝ⁺ × ℝ), where v(t, x) = u(t, x)H(t). Question 1) using f(y) = ¹/_{π^{1/2}} exp (-y²) gives that u(t, .) → δ₀ in D'(ℝ) and using Question 2) we prove that ∂_tu(t, .) → Δδ₀ in D'(ℝ). We get

$$\partial v - \Delta v = \delta_{(t,x)=(0,0)} \text{ in } \mathcal{D}'(\mathbb{R}^+ \times \mathbb{R}).$$