Refresher in distributions theory: Hints

Exercise 1 (Partial derivatives and Green formula) Let $u(x, y)=\ln \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right)$ and $r=\sqrt{x^{2}+y^{2}}$.
We denote by B_{r} the open ball centered in 0 with radius r and $\Omega_{\epsilon}=B_{1} \backslash \bar{B}_{\epsilon}$. We aim at computing $\triangle u$ in $\mathcal{D}^{\prime}\left(B_{1}\right)$.

1. Compute $\triangle u(x, y)$ for $(x, y) \neq 0$.

We get $\partial_{x} u=-x / r^{2}$ and $\partial_{x x} u=\left(x^{2}-y^{2}\right) / r^{4}$. Similarly $\partial_{y y} u=\left(y^{2}-x^{2}\right) / r^{4}$, so that $\Delta u=0$.
2. For $\varphi \in \mathcal{D}\left(B_{1}\right)$, we set

$$
I_{\varepsilon}=\int_{\Omega_{\varepsilon}} u \triangle \varphi \mathrm{~d} x \mathrm{~d} y
$$

Compute I_{ϵ}.
Using twice Green's formula, we get

$$
I_{\epsilon}=-\int_{\partial \Omega_{\epsilon}} \nabla u \cdot \mathbf{n} \varphi \mathrm{~d} \sigma+\int_{\partial \Omega_{\epsilon}} u \nabla \varphi \cdot \mathbf{n} \mathrm{~d} \sigma .
$$

Using the fact that $\partial \Omega_{\epsilon}=S(0,1) \cup S(0, \epsilon)$ and that, on $S(0, \epsilon)$, the unit exterior normal writes $\mathbf{n}=-\mathbf{x} /\|\mathbf{x}\|=-\mathbf{x} / r$, with $\mathbf{x}=(x, y)^{T}$, it leads to

$$
I_{\epsilon}=\underbrace{-\frac{1}{\epsilon} \int_{S(0, \epsilon)} \varphi \mathrm{d} \sigma}_{I_{\epsilon}^{1}}+\underbrace{\frac{\ln (\epsilon)}{\epsilon} \int_{S(0, \epsilon)} \nabla \varphi \cdot \mathbf{x} \mathrm{d} \sigma}_{I_{\epsilon}^{2}}
$$

3. Compute $\lim _{\epsilon \rightarrow 0} I_{\epsilon}$. Deduce the expression of $\triangle u$ in $\mathcal{D}^{\prime}\left(B_{1}\right)$.

We prove that $I_{\epsilon}^{2} \rightarrow 0$ as $\epsilon \rightarrow 0$, and using the mean-value theorem we show that $I_{\epsilon}^{1} \rightarrow$ $-2 \pi \varphi(0,0)$ as $\epsilon \rightarrow 0$ (to obtain this limit, you could also use polar coordinates and the dominated convergence theorem). So that $I_{\epsilon} \rightarrow-2 \pi \varphi(0,0)$ as $\epsilon \rightarrow 0$. Consequently, $\Delta u=-2 \pi \delta_{(0,0)}$ in $\mathcal{D}^{\prime}\left(B_{1}\right)$.

Course webpage: http://caseine.org/course/view.php?id=225

Exercise 2 (Heat Kernel) 1. Let $f \in L^{1}(\mathbb{R})$, and set, for $\varepsilon>0, f_{\varepsilon}(x)=\varepsilon^{-1} f(x / \varepsilon)$. Determine $\lim _{\varepsilon \rightarrow 0} f_{\varepsilon}$ in the sense of distributions.
Using Lebesgue's dominated convergence theorem and making the change of variable $y=\frac{x}{\varepsilon}$, we prove that, for any $\varphi \in \mathcal{D}(\mathbb{R})$,

$$
\left\langle T_{f_{\epsilon}}, \varphi\right\rangle \rightarrow\left(\int_{\mathbb{R}} f(y) \mathrm{d} y\right)\left\langle\delta_{0}, \varphi\right\rangle \text { as } \epsilon \rightarrow 0
$$

2. Let $u(t, x)=\frac{1}{(4 \pi t)^{1 / 2}} \exp \left(\frac{-x^{2}}{4 t}\right)$. Show that u solves the heat equation $\partial_{t} u(t, x)=\partial_{x x} u(t, x)$, for $t \in] 0,+\infty[, x \in \mathbb{R}$.
Direct computations give $\partial_{t} u(t, x)=\left(\frac{x^{2}}{4 t^{2}}-\frac{1}{2 t}\right) u(t, x)$ for $t>0$ and $x \in \mathbb{R}$. Same result for $\partial_{x x} u(t, x)$.
3. Determine the distributional limits : $\lim _{t \rightarrow 0} u(t, x)$ and $\lim _{t \rightarrow 0} \partial_{t} u(t, x)$. Deduce the PDE satisfied by v in $\mathcal{D}^{\prime}\left(\mathbb{R}^{+} \times \mathbb{R}\right)$, where $v(t, x)=u(t, x) H(t)$.
Question 1) using $f(y)=\frac{1}{\pi^{1 / 2}} \exp \left(-y^{2}\right)$ gives that $u(t,.) \underset{t \rightarrow 0}{\rightarrow} \delta_{0}$ in $\mathcal{D}^{\prime}(\mathbb{R})$ and using Question 2) we prove that $\partial_{t} u(t,.) \underset{t \rightarrow 0}{\rightarrow} \Delta \delta_{0}$ in $\mathcal{D}^{\prime}(\mathbb{R})$. We get

$$
\partial v-\Delta v=\delta_{(t, x)=(0,0)} \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{+} \times \mathbb{R}\right)
$$

Course webpage: http://caseine.org/course/view.php?id=225

