Refresher in distributions theory

Reminder : A distribution T on an open subset Ω of \mathbb{R}^d is a linear continuous form on $\mathcal{D}(\Omega)$. This means that $T \in \mathcal{D}'(\Omega)$ if it is a linear application from $\mathcal{D}(\Omega)$ to \mathbb{R} such that one of the two following equivalent properties holds : (i) If $(\varphi_n)_{n\in\mathbb{N}} \subset \mathcal{D}(\Omega)$ is such that there exists a compact subset K of Ω with supp $\varphi_n \subset K$ for all n, and φ_n and all its (partial) derivatives converges uniformly to 0 on K, then $\langle T, \varphi_n \rangle \to 0$ as $n \to \infty$. (ii) For all compact subset K of Ω , there exists C_K, α_K such that for all $\varphi \in \mathcal{D}(\Omega)$ with support included in K,

$$|\langle T, \varphi \rangle| \le C_K \sup_{|\alpha| \le \alpha_K} \left\| \partial^{(\alpha)} \varphi \right\|_{\infty}.$$

Exercise 1 Are the following applications from $\mathcal{D}(\mathbb{R}^n)$ (n = 1 or 2) to \mathbb{R} distributions?

a.
$$T: \varphi \mapsto |\varphi(0)|,$$

b. $T: \varphi \mapsto \int_{\mathbb{R}^2} xy \varphi''(\sqrt{x^2 + y^2}) dx dy,$
c. $T: \varphi \mapsto \int_{\mathbb{R}} |x|^{\alpha} \varphi(x) dx, \text{ with } \alpha \in \mathbb{R} \text{ such that } \alpha > -1,$
d. $T: \varphi \mapsto \int_{\mathbb{R}} \ln |x| \varphi(x) dx.$

Exercise 2 • Show that the application $\delta_0 : \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \varphi(0)$, defines a distribution. We call it the Dirac mass at 0.

• Compute the derivatives of δ_0 .

Now, our aim is to show that the Dirac distribution δ_0 is not regular, i.e., that there is no $g \in L^1_{loc}(\mathbb{R})$ such that :

$$\int_{\mathbb{R}} g(x)\varphi(x)\mathrm{d}x = \varphi(0), \quad \forall \varphi \in \mathcal{D}(\mathbb{R}).$$

Let us consider the sequence of functions $(\varphi_n(x))_n$ defined by :

$$\varphi_n(x) = \begin{cases} e^{1 - \frac{1}{1 - (nx)^2}} & \text{if } |x| < \frac{1}{n}, \\ 0 & \text{otherwise.} \end{cases}$$

- Show that $\varphi_n \in \mathcal{D}(\mathbb{R})$.
- Deduce the claimed result.

Course webpage: http://caseine.org/course/view.php?id=225

Exercise 3 (First order differential equation) Let $T \in D'(\mathbb{R})$ and $a \in \mathbb{R}$. The aim of this exercise is to solve the differential equation

$$T' - aT = \delta$$

where δ is the Dirac distribution.

1. Prove that T' = 0 if and only if T = K where K is a regular distribution associated to a (almost everywhere) constant function.

For that, we will use that if $\varphi_0 \in \mathcal{D}(\mathbb{R})$ such that $\int_{\mathbb{R}} \varphi_0(x) dx = 1$ then

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \exists ! \psi \in \mathcal{D}(\mathbb{R}), \exists ! c \in \mathbb{R}, \varphi = \psi' + c\varphi_0$$

- 2. Solve the differential equation T' aT = 0.
- 3. Solve the differential equation $T' aT = \delta$.

Exercise 4 (Partial derivatives and Green formula) Let $u(x, y) = \ln\left(\frac{1}{\sqrt{x^2+y^2}}\right)$ and $r = \sqrt{x^2 + y^2}$. We denote by B_r the open ball centered in 0 with radius r and $\Omega_{\epsilon} = B_1 \setminus \overline{B_{\epsilon}}$. We aim at computing

We denote by B_r the open ball centered in 0 with radius r and $\Omega_{\epsilon} = B_1 \setminus B_{\epsilon}$. We aim at com Δu in $\mathcal{D}'(B_1)$.

- 1. Compute $\triangle u(x, y)$ for $(x, y) \neq 0$.
- 2. For $\varphi \in \mathcal{D}(B_1)$, we set

$$I_{\varepsilon} = \int_{\Omega_{\varepsilon}} u \triangle \varphi \, \mathrm{d}x \mathrm{d}y.$$

Compute I_{ϵ} .

- 3. Compute $\lim_{\epsilon \to 0} I_{\epsilon}$. Deduce the expression of Δu in $\mathcal{D}'(B_1)$.
- **Exercise 5 (Heat Kernel)** 1. Let $f \in L^1(\mathbb{R})$, and set, for $\varepsilon > 0$, $f_{\varepsilon}(x) = \varepsilon^{-1} f(x/\varepsilon)$. Determine $\lim_{\varepsilon \to 0} f_{\varepsilon}$ in the sense of distributions.
 - 2. Let $u(t,x) = \frac{1}{(4\pi t)^{1/2}} \exp\left(\frac{-x^2}{4t}\right)$. Show that u solves the heat equation $\partial_t u(t,x) = \partial_{xx} u(t,x)$, for $t \in]0, +\infty$ [$x \in \mathbb{R}$.
 - 3. Determine the distributional limits : $\lim_{t\to 0} u(t, x)$ and $\lim_{t\to 0} \partial_t u(t, x)$. Deduce the PDE satisfied by v in $\mathcal{D}'(\mathbb{R}^+ \times \mathbb{R})$, where v(t, x) = u(t, x)H(t).