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The game

Figure 1. Illustration of the the game from [3].

The Tug-of-war game (TOW):

Two player random turn zero-sum game played on a domain � µ RN with a running payoff
function h : � æ R and a payoff function g defined on ˆ�.
Setting:
A token is placed at an initial position x0 œ � and each player can move the token to a new position in
B‘(xk).
A fair coin is tossed: if player I wins, the token is moved to the position xIk, otherwise to the position xIIk.
The game stops when the token reaches some position xf œ ˆ�. In that case, the game stops and player I’s
payoff is g(xf) + ‘2 Pf≠1

i=1 h(xi).
The Dynamic programming principle reduces to

8
><

>:

u‘(x) = 1
2
n

sup
yœB‘(x)

u‘(y) + inf
yœB‘(x)

u‘(y)
o

+ ‘2h(x) in �,

u‘(x) = g(x) on ˆ�.
(1)

A General version: each player chooses a position with probabilities – and —, respectively, and that the
game position moves with a uniform probability “, with –+—

2 + “ = 1. In this case, the DPP reads

u‘(x) = –

2 sup
yœB‘(x)

u‘(y) + —

2 inf
yœB‘(x)

u‘(y) + “

 
B‘(x)

u‘(y)dy + ‘2h(x), x œ �. (2)

Connection with PDEs on graphs

Differential operators
Given a weighted graph G = (V , E , w). The discrete upwind/donwind gradients of u are defined
by

Ò±
wu(x) = (ˆ±

y u(x))TyœV , where ˆ±
y u(x) =

⇣p
w(x, y)(u(y) ≠ u(x))

⌘±
. (3)

Its Lp norm is defined as

ÎÒ±
wu(x)Îp =

8
>>><

>>>:

maxyœI(x)
⇣p

w(x, y)(u(y) ≠ u(x))±
⌘
for p = Œ

Î
�
Ò±

wu
�
(x)Îp =

 P

yœI(x)
w(x, y)p/2�u(y) ≠ u(x)

�±
�1

p
for 1 Æ p < Œ.

(4)

The 2-Laplacian on graph is defined by

(�w,2u)(x) =
P

yœI(x) w(x, y)u(y)
P

yœI(x) w(x, y) ≠ u(x). (5)

The Œ-Laplacian on graph is defined by

(�w,Œu)(x) = 1
2
⇣

ÎÒ+
wu(x)ÎŒ ≠ ÎÒ≠

wu(x)ÎŒ
⌘

. (6)

For 2 Æ p < Œ, the game p-Laplacian on graph is defined by

(�G
w,pu)(x) = p ≠ 2

p
�w,Œu(x) + 2

p
�w,2u(x). (7)

Averaging operators
Let us consider an Euclidean graph G = (V , E , w) with V = � µ RN and a weight function

w(x, y) =
(

1 if |x ≠ y| Æ ‘,

0 otherwise.
(8)

Then, using (4), we easily get
max

yœI(x)
u(y) = ÎÒ+

wu(x)ÎŒ + u(x),

min
yœI(x)

u(y) = u(x) ≠ ÎÒ≠
wu(x)ÎŒ.

(9)

Plugging (9) in (2), we obtain the following interpretation of the generalized TOW game (2) in
terms of a PDE:

≠ �–,—,“u(x) = h(x), (10)

where �–,—,“u(x) = –
2ÎÒ+

wu(x)ÎŒ ≠ —
2ÎÒ≠

wu(x)ÎŒ + “�w,2u(x).
On a general weighted graph G = (V , E , w), recall the following notations for nonlocal dilation,
nonlocal erosion and nonlocal mean, respectively:

NLD(u)(x) = ÎÒ+
wu(x)ÎŒ + u(x) = u(x) + max

yœI(x)

⇣p
w(x, y)(u(y) ≠ u(x))+

⌘
,

NLE(u)(x) = u(x) ≠ ÎÒ≠
wu(x)ÎŒ = u(x) ≠ max

yœI(x)

⇣p
w(x, y)(u(y) ≠ u(x))≠

⌘
,

NLM(u)(x) = u(x) + �w,2u(x) =
P

yœI(x) w(x, y)u(y)
P

yœI(x) w(x, y) ,

(11)

Then, defining the following nonlocal averaging operator:

NLA(u) := –

2NLD(u) + —

2NLE(u) + “NLM(u), (12)

equation (10) can be rewritten as
u(x) ≠NLA(u)(x) = h(x). (13)

To discretize such nonlocal PDEs on general weighted graphs, as it suffices in practice to
implement the nonlocal mathematical morphology operators (11).
Recovered PDEs
Eikonal equation (– = “ = 0 and — = 1) : ÎÒ≠

wu(x)ÎŒ = h(x).
Œ-Laplacian (– = — = 1 and “ = 0) : ≠�w,Œu(x) = h(x).
Laplace equation (– = — = 0 and “ = 1) : ≠�w,2u(x) = h(x).
Game p-Laplace equation (– = — = p≠2

p and “ = 2
p) : ≠�G

w,pu(x) = h(x).

Simple algorithms for inverse problems

Consider a subset A µ V consisting of vertices with the missing information.Then, many prob-
lems we encounter in image processing and computer vision can be recast in the form of inter-
polation problems, i.e., one seeks constructing new values starting from known values, which
amounts to solve the Dirichlet problem

(
≠�–,—,“u = 0 in A,

u = g on ˆA.
(14)

To solve (14) we consider the associated evolution problem, use a Euler discretization by taking
ˆtu ¥ un+1≠un

�t , where un(x) = u(x, n�t). Taking �t = 1 and �–,—,“ = NLA(u) ≠ u, we get the
following iterations governed by a nonlocal average filter consisting of convex combination of
the nonlocal, dilation, erosion and mean terms:8

><

>:

u0 = u0 in A,
un+1 = NLA(un) in A,
un+1 = g on ˆA.

(15)

Applications in cultural heritage

Nonlocal inpainting and 2D-3D colorization

We consider A µ V the set of vertices with missing data and prescribe boundary condition on
ˆA via a function g : ˆA æ R3. We apply the iterative scheme (15) with – = — = 1, “ = 0, i.e.,
using the Œ-Laplacian.

(a) (b)

(c)

Figure 2. (a) virtual restoration of a 2D image of King Edward taken from the Bayeux Tapestry (original images,
images with areas to be restored indicated in red, and restoration results). (b) 2D colorization, where the left column
represents the backside of a scene from the Bayeux Tapestry, and the second column represents the initial image,
the image with seeds, and the colored result. (c) 3D colorization, with input models on the left and colored ones on
the right.

Semi-supervised segmentation

We apply the iterative scheme (15) with – = “ = 0, — = 1, i.e., using the eikonal equation with
h © 1.

Figure 3. Semi-supervised segmentation of the Bayeux Tapestry.
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