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a b s t r a c t

In this paper we investigate limits as p → ∞ of solutions up to Finsler p-Laplacian
problems −div

(
F ∗(x, ∇up)p−1∂ξF ∗(x, ∇up)

)
= f with f > 0, coupled with a

Dirichlet boundary condition up = g on ∂Ω . We prove that the whole sequence of
solutions {up} converges to the limit function u∞ strongly in W 1,m(Ω) for any
1 ≤ m < ∞, provided that F ∗(x, .) has some strict convexity on its unit sphere.
We also characterize an explicit expression of the limit function.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is concerned with limits as p → ∞ for Finsler p-Laplacian equations coupled with a Dirichlet
oundary condition {

−div
(
F ∗(x, ∇up)p−1∂ξF ∗(x, ∇up)

)
= f in Ω

up = g on ∂Ω ,
(1.1)

here F ∗ is a Finsler metric, f is a positive continuous function on Ω and ∂ξF ∗(x, .) is the subdifferential
ith respect to the second variable, which will be recalled in Section 2. It is well-known that these are the
orresponding Euler–Lagrange equations of the following convex variational problems

min
u∈W 1,p(Ω)

{∫
Ω

F ∗(x, ∇u)p

p
dx −

∫
Ω

ufdx : u = g on ∂Ω

}
.

When F ∗(x, ξ) = |ξ| is the Euclidean norm (independent of x), the Eqs. (1.1) become the standard p-
aplacian problems. The study of limits of p-Laplacian type problems as p → ∞ has recently received a lot of
ttention and is closely connected with many relevant topics such as the Monge–Kantorovich transportation
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roblem (see, for instance [2,18,26,29]), the sandpile problem [3,5,17], the mass optimization problem [9],
he absolutely minimizing Lipschitz extensions, the infinity-harmonic functions and the Tug of War games
see, for instance [4,8,11,12,20] and the references therein).

As in Bhattacharya–DiBenedetto–Manfredi [7], when f > 0, F ∗(x, ξ) = |ξ| and g = 0, the sequence of
olutions up is shown to be uniformly convergent to u∞ = d(x, ∂Ω) (see also [22]). More recently, Buccheri–
eonori–Rossi [10] proposed two proofs showing the convergence of the gradients ∇up to the gradient of

limit function ∇u∞ strongly in Lm(Ω), 1 ≤ m < ∞ as p → ∞. The two proofs need special properties of
the Euclidean norm: the first proof follows ideas given in [7] using the intrinsic characterization of norms
induced by inner products called “parallelogram law”, while the second one exploits an explicit expression
of the subdifferential in terms of ξ, that is ∂|ξ| = ξ

|ξ| .
Unfortunately, as for the general case of Finsler metric F ∗, the main difficulty is the lack of such a

parallelogram law as well as an explicit expression of the subdifferential ∂ξF ∗(x, ξ).
As far as general Finsler metrics F ∗ are concerned, it is known that up converges uniformly to u∞ on Ω

s p → ∞ and the sequence of gradients {∇up}p is uniformly bounded in Lm(Ω) for any 1 ≤ m < ∞ for
arge p (by a constant independent from p). Therefore, one can obtain the weak convergence of the gradients
up to ∇u∞ in Lm(Ω) as p → ∞ (see e.g. Section 3 below, also [16,21]). However, up to our knowledge,

he strong convergence of ∇up as p → ∞ is still missing in the general Finslerian setting.
The main goal of the present paper is to derive the strong convergence of ∇up in Lm(Ω), for any

≤ m < ∞, in the general Finslerian setting. This study confirms that the strong convergence of gradients
up still holds true, provided that f > 0 on Ω and F ∗ satisfies some geometric condition. More precisely, we
ill assume that F ∗(x, .) is strictly convex on its unit sphere for almost-everywhere x in Ω (see Section 2 for
recise statements and examples). Under these conditions, we will show that the limit function u∞ is actually
he unique viscosity solution to the stationary Hamilton–Jacobi equation of eikonal type F ∗(x, ∇u∞(x)) = 1,
oupled with the Dirichlet boundary condition u∞ = g on ∂Ω . Moreover, the whole sequence {∇up} is
hown to be convergent to ∇u∞ almost-everywhere in Ω as p → ∞. After that, by making use of Clarkson’s
nequality and the reverse Fatou lemma, we obtain that ∇up converges to ∇u∞ strongly in the Lebesgue
paces Lm(Ω) as p → ∞ for any 1 ≤ m < ∞. In other words, the whole sequence {up} converges to the
imit function u∞ strongly in the Sobolev spaces W 1,m(Ω) for any 1 ≤ m < ∞.

The paper is organized as follows. In the next section, we will present some preliminaries on Finsler metrics
nd assumptions. The weak convergence of the gradients ∇up is discussed in detail in Section 3. Section 4 is
evoted to the limit variational problem and an expression of the limit function u∞ when the source function
is positive. We also interpret the limit function in terms of viscosity solutions to an appropriate Hamilton–

acobi equation of first order. Finally, in Section 5, we prove the strong convergence of the gradients ∇up

o ∇u∞ in Lm(Ω) as p → ∞ for any 1 ≤ m < ∞, and therefore the whole sequence {up} converges to the
imit function u∞ strongly in the Sobolev spaces W 1,m(Ω) for any 1 ≤ m < ∞.

2. Preliminaries and assumption

Let Ω be an open, connected, bounded Lipschitz domain of RN . A Finsler metric is a continuous function
F : Ω ×RN −→ [0, +∞) such that F (x, .) is sub-additive and positively 1-homogeneous with respect to the
econd variable, that is,

• F (x, ξ1 + ξ2) ≤ F (x, ξ1) + F (x, ξ2) ∀x ∈ Ω , ξ1, ξ2 ∈ RN ;
• F (x, tξ) = tF (x, ξ) ∀(x, ξ) ∈ Ω × RN and t ≥ 0.

It is not difficult to see that the above two properties imply that F (x, .) is convex.
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In this work, the Finsler metric F is assumed to be non-degenerate, that is, there exist two positive
constants K1, K2 such that

K1|ξ| ≤ F (x, ξ) ≤ K2|ξ| for all x ∈ Ω , ξ ∈ RN . (2.2)

Its polar function F ∗, which is also a non-degenerate Finsler metric, is defined by

F ∗(x, q) = sup
{ξ: F (x,ξ)≤1}

⟨q, ξ⟩ = sup
{ξ: F (x,ξ)=1}

⟨q, ξ⟩ = sup
ξ ̸=0

⟨q, ξ⟩
F (x, ξ) .

he subdifferential with respect to the second variable of F ∗(x, .) is denoted by ∂ξF ∗(x, .), by definition,

ζ ∈ ∂ξF ∗(x, ξ1) ⇔ F ∗(x, ξ2) ≥ F ∗(x, ξ1) + ⟨ζ, ξ2 − ξ1⟩ ∀ξ2 ∈ RN .

he Finsler distance associated with F , denoted by dF , is given by

dF (x, y) = inf
η

∫ 1

0
F (η(s), η̇(s))ds,

here the infimum is taken over all Lipschitz curves η joining x to y within Ω and η(0) = x, η(1) = y.
Concerning the Dirichlet boundary condition, the function g needs to have some compatibility, that is

g(y) − g(x) ≤ dF (x, y) for all x, y on ∂Ω . By extension if necessary, we assume moreover that g ∈ W 1,∞(Ω)
and g(y) − g(x) ≤ dF (x, y) for all x, y in Ω .

In order to improve from the weak to strong convergence of the gradients, we will make use of the following
ssumption concerning the geometry of Finsler metric F ∗ (and, of course, F ).
A): F ∗(x, .) is strictly convex on its unit sphere in the sense that for any q1, q2 satisfying F ∗(x, q1) =
, F ∗(x, q2) = 1 then

q1 ̸= q2, t ∈ (0, 1) ⇒ F ∗(x, (1 − t)q1 + tq2) < 1.

It is worth noting that the aforementioned property is related to the strict convexity of Banach spaces.
s a sufficient condition, the assumption (A) holds if F (x, .) ∈ C1(RN \ {0}), the set of continuously
ifferentiable functions in RN \{0} (see e.g. [6, page 184]). As a typical example, the assumption (A) happens
hen F (x, ξ) = k(x)∥ξ∥p = k(x) (ξp

1 + · · · + ξp
N )

1
p for 1 < p < ∞ and any positive continuous function k on

Ω . In this case, we can check at once that F ∗(x, v) = 1
k(x) ∥v∥p′ with the Hölder conjugate p′ = p

p−1 .

. Limit as p → ∞: weak convergence

For p > N , we consider the following variational problem

min
u∈W 1,p(Ω)

{
Fp(u) :=

∫
Ω

F ∗(x, ∇u)p

p
dx −

∫
Ω

ufdx : u = g on ∂Ω

}
.

bserve that the constraint set W 1,p
g (Ω) := {u ∈ W 1,p(Ω) : u = g on ∂Ω} is a closed, convex, non-empty

ubset of the Sobolev space W 1,p(Ω). The objective functional Fp is coercive, strictly convex and lower
emicontinuous on W 1,p

g (Ω). Therefore, following the standard variational arguments, the cost functional
p admits a unique minimizer in W 1,p

g (Ω), which satisfies the Finsler p-Laplacian equation (1.1). Moreover,
he sequence of solutions {up} is known to be bounded in the Sobolev spaces W 1,m(Ω) for any 1 ≤ m < ∞,
ndependently from p. So, one can obtain the weak convergence of the gradients ∇up to ∇u∞ in Lm(Ω) as
→ ∞ (see, for example, [16,21]). Here we present the weak convergence for completeness.

roposition 3.1. Let up be a minimizer of Fp on W 1,p
g (Ω). Then, up to a subsequence, up ⇒ u∞

niformly on Ω and ∇up ⇀ ∇u∞ weakly in Lm(Ω) for any 1 ≤ m < ∞ as p → ∞. Moreover one has
∗(x, ∇u (x)) ≤ 1 a.e. in Ω .
∞

3
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roof. Thanks to Theorem 2.E in [27], there is a Morrey-type inequality independent of p > N + 1, that
is,

∥u∥L∞(Ω) ≤ CΩ∥∇u∥Lp(Ω) for all u ∈ W 1,p
0 (Ω), p > N + 1, (3.3)

where the constant CΩ does not depend on p and u. Apply (3.3) to the function up − g ∈ W 1,p
0 (Ω), we get

∥up − g∥L∞(Ω) ≤ CΩ∥∇up − ∇g∥Lp(Ω)

and hence
∥up∥L∞(Ω) ≤ CΩ∥∇up∥Lp(Ω) + C1. (3.4)

On the other hand, since up is a minimizer and g ∈ W 1,p
g (Ω), F ∗(x, ∇g(x)) ≤ 1, we have∫

Ω

F ∗(x, ∇up)p

p
dx ≤

∫
Ω

upfdx + |Ω |
p

−
∫
Ω

gfdx

≤ ∥up∥L∞(Ω)∥f∥L1(Ω) + |Ω |
p

−
∫
Ω

gfdx

≤ C2∥∇up∥Lp(Ω) + C3 (by (3.4)),
where the constants Ci do not depend on p. It follows from the non-degeneracy (2.2) of the Finsler metric
F that

∥F ∗(x, ∇up)∥p
Lp(Ω) ≤ C4p(1 + ∥F ∗(x, ∇up)∥Lp(Ω)).

t follows that
∥F ∗(x, ∇up)∥Lp(Ω) ≤ (C5p)

1
p−1 . (3.5)

et N < m ≤ p. By the non-degeneracy again and the Morrey-Sobolev embedding theorem (see [1]), (3.5)
ields

|up(x) − up(y)| ≤ C6|x − y|1−N/m
.

hanks to Ascoli–Arzela’s theorem, up to a subsequence, up ⇒ u∞ uniformly on Ω as p → ∞ and

|u∞(x) − u∞(y)| ≤ C6|x − y|1−N/m
.

etting m → ∞, we deduce that u∞ ∈ W 1,∞(Ω).
We are now in a position to show that F ∗(x, ∇u∞(x)) ≤ 1 a.e. in Ω . Observe that up ⇀ u∞ weakly in
1,m(Ω), that is, up → u∞ strongly in Lm(Ω) and ∇up ⇀ ∇u∞ weakly in Lm(Ω) as p → ∞. Now, fix

ny ξ ∈ Cc(Ω), ξ ≥ 0. It follows from the convexity of F ∗(x, .), the weak convergence of ξ∇up, Hölder’s
nequality and (3.5) that∫

Ω

F ∗(x, ∇u∞)ξdx =
∫
Ω

F ∗(x, ξ∇u∞)dx

≤ lim inf
p→+∞

∫
Ω

F ∗(x, ξ∇up)dx

= lim inf
p→+∞

∫
Ω

F ∗(x, ∇up)ξdx

≤ lim inf
p→+∞

(
∥ξ∥

Lp′ (Ω)∥F ∗(x, ∇up)∥Lp(Ω)

)
≤ lim inf

p→+∞

(
|Ω |

m′−p′
m′p′ ∥ξ∥

Lm′ (Ω)∥F ∗(x, ∇up)∥Lp(Ω)

)
≤ |Ω |

m′−1
m′ ∥ξ∥

Lm′ (Ω),

here m′ = m
m−1 , p′ = p

p−1 are the Hölder conjugates of m and p. This implies that

∥F ∗(x, ∇u∞)∥Lm(Ω) ≤ |Ω |
m′−1

m′ .

Finally, the proof is completed by letting m → ∞. □
4
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. The limit problem

.1. The limit variational problem

In this subsection we characterize the limit problem as well as some properties of its solution, which will
e useful later. Let us consider the following variational problem

max
u∈W 1,∞(Ω)

{∫
Ω

ufdx : F ∗(x, ∇u(x)) ≤ 1 a.e. in Ω , u = g on ∂Ω

}
. (4.6)

roposition 4.2. The limit function u∞ is an optimal solution to the limit problem (4.6).

roof. Following Proposition 3.1, we get that F ∗(x, ∇u∞(x)) ≤ 1 a.e. in Ω as well as u∞ = g on ∂Ω . In
other words, the limit function u∞ satisfies the constraints of (4.6). Now for any v ∈ W 1,∞

g (Ω) satisfying
∗(x, ∇v(x)) ≤ 1 a.e. in Ω , we get

−
∫
Ω

upfdx ≤ Fp(up) ≤ Fp(v) ≤ |Ω |
p

−
∫
Ω

vfdx.

etting p → ∞ to get
∫
Ω

u∞fdx ≥
∫
Ω

vfdx, which shows the optimality of the limit function u∞, and the
roof is complete. □

roposition 4.3. Assume that f > 0. Then the limit problem (4.6) has a unique optimal solution given by
u(x) = miny∈∂Ω {dF (y, x) + g(y)}. In particular u∞ = u.

A function u is called 1-Lipschitz with respect to dF on Ω (also, 1−dF Lipschitz) if u(y)−u(x) ≤ dF (x, y)
for all x, y in Ω . Such a 1 − dF Lipschitz function u is completely characterized via their gradient by the
condition F ∗(x, ∇u(x)) ≤ 1 a.e. in Ω . We give here a proof for completeness.

Lemma 4.4. A function u is 1-Lipschitz with respect to dF if and only if

F ∗(x, ∇u(x)) ≤ 1 a.e. in Ω .

roof. We divide the proof into two parts. First, assume that u is 1-Lipschitz with respect to dF . Then u

s differentiable a.e. in Ω . Let x ∈ Ω be any point at which u is differentiable. We have, for any v ∈ RN ,
⟨∇u(x), v⟩

F (x, v) = lim
h→0

u(x + hv) − u(x)
F (x, hv)

≤ lim sup
h→0

dF (x, x + hv)
F (x, hv)

≤ lim sup
h→0

∫ 1
0 F (x + thv, hv)dt

F (x, hv) = 1.

ence, by definition, F ∗(x, ∇u(x)) ≤ 1. Conversely, suppose that F ∗(x, ∇u(x)) ≤ 1 a.e. in Ω . Case 1: If u

s smooth then F ∗(x, ∇u(x)) ≤ 1 ∀x ∈ Ω . For any x, y in Ω and any Lipschitz curve η in Ω joining x to y,
e have

u(y) − u(x) =
∫ 1

0
∇u(η(t))η̇(t)dt

≤
∫ 1

0
F ∗(η(t), ∇u(η(t)))F (η(t), η̇(t))dt

≤
∫ 1

F (η(t), η̇(t))dt.

0

5



V.T. Nguyen Nonlinear Analysis 238 (2024) 113415

I

C
f

P
d

T
f
d

n

H
t
e∫
f

4

v
t
J
r

x

t follows that u(y) − u(x) ≤ dF (x, y) for all x, y in Ω . Case 2: In general case, for any continuous function
u satisfying F ∗(x, ∇u(x)) ≤ 1 a.e. x ∈ Ω , there exists a sequence of compactly supported smooth functions
uε such that F ∗(x, ∇uε(x)) ≤ 1 ∀x ∈ Ω and uε ⇒ u uniformly on Ω (see [25, Lemma 3.1]). According to

ase 1 above, uε(y) − uε(x) ≤ dF (x, y) for all x, y in Ω . Passing to the limit we recover the same property
or u, which completes the proof. □

roof of Proposition 4.3. It is not difficult to see that u is 1-Lipschitz with respect to the Finsler distance
F . Indeed, for any x, z ∈ Ω , there exists y ∈ ∂Ω such that u(x) = dF (y, x) + g(y). Then

u(z) − u(x) ≤ dF (y, z) + g(y) − dF (y, x) − g(y) ≤ dF (x, z).

his implies that F ∗(x, ∇u(x)) ≤ 1 a.e. in Ω by Lemma 4.4. On the other hand, it is clear that u(x) ≤ g(x)
or all x on ∂Ω . Let us show the converse. Since the compatibility g(x) − g(y) ≤ dF (y, x), we get g(x) ≤
F (y, x) + g(y) for all y ∈ ∂Ω and therefore g ≤ u on ∂Ω . So u is admissible for the problem (4.6). We are
ow in a position to show that u is optimal and unique. Let v be an optimal solution. We will show that

v = u. For any x ∈ Ω , y ∈ ∂Ω , we have that

v(x) − g(y) = v(x) − v(y) ≤ dF (y, x).

ence, v(x) ≤ dF (y, x) + g(y) for all y ∈ ∂Ω and therefore v(x) ≤ u(x) for all x ∈ Ω . Suppose, contrary
o our claim, that v(x0) < u(x0) for some x0 ∈ Ω . By the continuity of f , v, u and f > 0 in Ω , there
xists a neighborhood U of x0 in Ω such that v(x) < u(x) and f(x) > 0 for all x in U . It follows that
Ω

vf <
∫
Ω

uf , which is a contradiction with the optimality of v. As a consequence, we obtain that the limit
unction u∞ ≡ u = miny∈∂Ω dF (y, x) + g(y). □

.2. Interpretation in terms of viscosity solutions

Let us recall briefly the notion of viscosity solutions and its construction via Perron’s method. The
iscosity solution concept was introduced in the early 1980s by Crandall and Lions [15] as a generalization of
he classical solution to PDEs. Subsequently the definition and properties of viscosity solutions for Hamilton–
acobi equations were refined in a joint work by Crandall, Evans and Lions [13]. In addition, an excellent
eference for second-order equations might be the user’s guide written by Crandall, Ishii, and Lions [14].

Let us consider a continuous Hamiltonian H :Ω × RN → R satisfying the following assumptions, for any
∈ Ω , Z(x) := {ξ ∈ RN : H(x, ξ) ≤ 0}:

(H1) coercivity: Z(x) is compact;
(H2) quasiconvexity: Z(x) is convex;
(H3) H(x, 0) < 0, that is 0 ∈ intZ(x).

We are interested in the following quasiconvex Hamilton–Jacobi equation of first order

H(x, ∇u) = 0, x ∈ Ω . (4.7)

For clarity, we recall below two equivalent definitions of viscosity solutions via touching functions and
generalized differentials, following the presentation of a recent monograph [28].

Definition 4.5 (Viscosity Solutions via Touching Functions). • A continuous function u :Ω → R is said to
be a viscosity subsolution of (4.7) if H(x, ∇ϕ(x)) ≤ 0 for any x ∈ Ω and any C1 function ϕ such that u − ϕ

has a strict local maximum at x.
• A continuous function u :Ω → R is said to be a viscosity supersolution of (4.7) if H(x, ∇ϕ(x)) ≥ 0 for

any x ∈ Ω and any C1 function ϕ such that u − ϕ has a strict local minimum at x.

6
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• A function u is a viscosity solution of (4.7) if it is simultaneously a viscosity subsolution and a viscosity
supersolution.

It is known that the viscosity solution concept can be also defined via generalized differentials. For any
x ∈ Ω , the sets

D−u(x) =
{

p ∈ RN : lim inf
y→x

u(y) − u(x) − p(y − x)
|y − x|

≥ 0
}

D+u(x) =
{

p ∈ RN : lim sup
y→x

u(y) − u(x) − p(y − x)
|y − x|

≤ 0
}

re called the (Frechét) subdifferential and superdifferential of u at x, respectively.

efinition 4.6 (An Equivalent Definition of Viscosity Solutions via Generalized Differentials). • A contin-
ous function u is a viscosity subsolution of (4.7) if H(x, p) ≤ 0 for every x ∈ Ω , p ∈ D+u(x).
A continuous function u is a viscosity supersolution of (4.7) if H(x, p) ≥ 0 for every x ∈ Ω , p ∈ D−u(x).
We say that u is a viscosity solution if it is both a viscosity subsolution and a viscosity supersolution.

For x ∈ Ω , let us define the support function of the 0-sublevel set Z(x) by

σ(x, q) := sup q · Z(x) = sup{q · ξ | ξ ∈ Z(x)} for q ∈ RN . (4.8)

he assumptions (H1)–(H3) ensure that σ is a non-degenerate Finsler metric. Denote by Γ (x, y) the set of
ll Lipschitz continuous curves ζ defined on [0, 1] joining x to y in Ω and ζ(0) = x, ζ(1) = y. One then
efines the intrinsic distance by

dσ(x, y) := inf
ζ∈Γ(x,y)

∫ 1

0
σ(ζ(t), ζ̇(t))dt,

hich turns out to be a distance, but not necessarily symmetric. That is, dσ(x, y) ≥ 0 for any x, y ∈ Ω ;
σ(x, y) = 0 if and only if y = x. In addition, for all x, y, z ∈ Ω one has dσ(x, y) ≤ dσ(x, z) + dσ(z, y). We
ummarize below a basic character of viscosity subsolutions in terms of the intrinsic distance dσ.

roposition 4.7 ([19,23]).

• u is a viscosity subsolution if and only if u(y) − u(x) ≤ dσ(x, y) for any x, y ∈ Ω .
• Given g satisfying the compatibility condition g(y)−g(x) ≤ dσ(x, y) for x, y in Ω , then the unique viscosity

solution u∗ to the Hamilton–Jacobi equation H(x, ∇u(x)) = 0 in Ω , coupled with a Dirichlet boundary
condition u = g on ∂Ω , is expressed by

u∗ = max {u : u is a viscosity subsolution and u = g on ∂Ω} .

Coming back to our concrete situation, let us set H(x, ξ) := F ∗(x, ξ) − 1. Then the Hamiltionian H

satisfies all the assumptions (H1)–(H3). Moreover, the support function σ defined in (4.8) is exactly the
nitial Finsler metric F .

roposition 4.8. The limit function u∞ is a viscosity solution of the Hamilton–Jacobi equation F ∗(x, ∇u) =
and therefore, in particular

F ∗(x, ∇u∞(x)) = 1 a.e. in Ω .

roof. Since g satisfies the compatibility condition g(y) − g(x) ≤ dF (x, y) for all x, y in Ω , the unique
iscosity solution u∗ to the stationary Hamilton–Jacobi equation H(x, ∇u(x)) = F ∗(x, ∇u(x)) − 1 = 0 in
7
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and u = g on ∂Ω , is given by

u∗ = max {u : u is a viscosity subsolution and u = g on ∂Ω}
= max {u : u(y) − u(x) ≤ dF (x, y) for all x, y in Ω and u = g on ∂Ω}
= argmax (4.6) = u∞. □

5. Limit as p → ∞: strong convergence

In this section we will show an improvement on the weak in order to obtain the strong convergence of the
gradients ∇up in the general Finslerian setting.

Theorem 5.9. Assume that F ∗(x, .) satisfies the condition (A) about the strict convexity on its unit sphere
for a.e. x in Ω and f > 0 in Ω . Let up be a solution of (1.1). Then the whole sequence {up} converges to u∞
strongly in W 1,m(Ω) as p → ∞ for all 1 ≤ m < ∞.

In order to clarify the proof of Theorem 5.9 in the general case, we will make use of the following technical
lemma.

Lemma 5.10. Suppose that F ∗(x0, .) satisfies the condition (A) about the strict convexity on its unit sphere.
If {

F ∗(x0, b) = F ∗(x0, a) > 0
⟨α ∂ξF ∗(x0, b) − ∂ξF ∗(x0, a), b − a⟩ = 0 for some α ≥ 0

hen
∂ξF ∗(x0, b) ∩ ∂ξF ∗(x0, a) ̸= ∅

nd
b = a.

roof. First, let us show that ∂ξF ∗(x0, b) ∩ ∂ξF ∗(x0, a) ̸= ∅. Suppose, contrary to our claim, that
ξF ∗(x0, b) ∩ ∂ξF ∗(x0, a) = ∅. Let z2 ∈ ∂ξF ∗(x0, b). We get that z2 /∈ ∂ξF ∗(x0, a) and hence (thanks to
uler’s Homogeneous Function Theorem, see [24, p. 173–174])

⟨z2, a⟩ < F ∗(x0, a) = F ∗(x0, b) = ⟨z2, b⟩. (5.9)

n the same way, for any z1 ∈ ∂ξF ∗(x0, a), we get

⟨z1, a⟩ > ⟨z1, b⟩. (5.10)

rom (5.9) and (5.10), we get {
⟨z2, b − a⟩ > 0
⟨z1, b − a⟩ < 0.

t follows that, for any α ≥ 0,
α⟨z2, b − a⟩ > ⟨z1, b − a⟩

r equivalently,
⟨αz2 − z1, b − a⟩ > 0,

hich is a contradiction. This proves the first assertion of the lemma.
Now, let z ∈ ∂ξF ∗(x0, b) ∩ ∂ξF ∗(x0, a). We get z ∈ ∂ξF ∗(x0, 0) and

∗ ∗
⟨z, b⟩ = F (x0, b) and ⟨z, a⟩ = F (x0, a).
8
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ince F ∗(x0, b) = F ∗(x0, a) := l > 0, we obtain that
⟨
z, b

l − a
l

⟩
= 0. For any t ∈ (0, 1), consider

:= (1 − t) a
l + t b

l . It is clear that
⟨z, v − a

l
⟩ = t

l
⟨z, b − a⟩ = 0.

t follows that, by z ∈ ∂ξF ∗(x0, 0) if necessary,

1 ≥ F ∗(x0, v) ≥ ⟨z, v⟩ = ⟨z,
a

l
⟩ = F ∗(x0, a)

l
= 1,

hich implies F ∗(x0, v) = 1. Since F ∗(x0, .) satisfies the assumption (A), we deduce that b = a. □

roof of Theorem 5.9. We divide the proof into two main steps. Firstly, let us show that the whole
equence ∇up converges to ∇u∞ almost-everywhere in Ω as p → ∞. Indeed, take up − u∞ ∈ W 1,p

0 (Ω) as
test functions in (1.1), we get∫

Ω

⟨F ∗(x, ∇up)p−1∂ξF ∗(x, ∇up), ∇(up − u∞)⟩ =
∫
Ω

f(up − u∞).

Therefore, by the fact that up ⇒ u∞ uniformly, ∇(up − u∞) ⇀ 0 weakly and F ∗(x, ∇u∞(x)) = 1 a.e. in Ω ,
e get that ∫

Ω

⟨F ∗(x, ∇up)p−1∂ξF ∗(x, ∇up) − F ∗(x, ∇u∞)p−1∂ξF ∗(x, ∇u∞), ∇(up − u∞)⟩

=
∫
Ω

f(up − u∞) −
∫
Ω

⟨∂ξF ∗(x, ∇u∞), ∇(up − u∞)⟩ → 0 as p → ∞.

et us consider the integrand

gp := ⟨F ∗(x, ∇up)p−1∂ξF ∗(x, ∇up) − F ∗(x, ∇u∞)p−1∂ξF ∗(x, ∇u∞), ∇(up − u∞)⟩.

bserve that gp ≥ 0 (by the convexity of F ∗(x, ξ)p with respect to the second variable ξ) and thus gp

onverges to 0 strongly in L1(Ω). Then, up to a subsequence, gp converges to 0 almost-everywhere in Ω . Let
s set

Z := {x ∈ Ω : F ∗(x, ∇u∞(x)) = 1}
⋂ {

x ∈ Ω : lim
p→∞

gp = 0
}

⋂
{x ∈ Ω : F ∗(x, .) satisfies the assumption (A)} .

t is clear that |Z| = |Ω | (the Lebesgue measure of sets). We are now in a position to show that ∇up(x0) →
u∞(x0) for any x0 ∈ Z. Let us fix any x0 ∈ Z. Denote ∇up(x0) = ξp. By Euler’s Homogeneous Function
heorem (see [24, p. 173–174]), we get ⟨∂ξF ∗(x0, ξp), ξp⟩ = F ∗(x0, ξp) and

gp(x0)
= F ∗(x0, ξp)p − ⟨F ∗(x0, ξp)p−1∂ξF ∗(x0, ξp), ∇u∞(x0)⟩ − ⟨∂ξF ∗(x0, ∇u∞), ξp − ∇u∞⟩.

Since gp(x0) → 0, F ∗(x0, ξp) is bounded and so is ξp. Up to a subsequence, ξp → ξ. Let us show that
∗(x0, ξ) = 1. If F ∗(x0, ξ) > 1, then F ∗(x0, ξp) > 1 for large p and therefore gp(x0) → ∞, a contradiction.

f F ∗(x0, ξ) < 1, then as p → ∞

gp(x0) → − ⟨∂ξF ∗(x0, ∇u∞(x0)), ξ − ∇u∞(x0)⟩
= −⟨∂ξF ∗(x0, ∇u∞(x0)), ξ⟩ + F ∗(x0, ∇u∞(x0))
≥ F ∗(x0, ∇u∞(x0)) − F ∗(x0, ξ) > 0,

hich is again a contradiction.

9
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So we have shown that ∇up(x0) → ξ and F ∗(x0, ξ) = 1. Since gp(x0) → 0, we obtain

⟨α∂ξF ∗(x0, ξ) − ∂ξF ∗(x0, ∇u∞(x0)), ξ − ∇u∞(x0)⟩ = 0

or some α ≥ 0. Following Lemma 5.10, we conclude that ξ = ∇u∞(x0). By the uniqueness of the limit
see Proposition 4.3), we deduce that the whole sequence ∇up converges to ∇u∞ almost-everywhere in Ω

s p → ∞.
Secondly, the task is now to show the strong convergence of ∇up to ∇u∞ in Lm(Ω) as p → ∞ for any
≤ m < ∞. Due to Hölder’s inequality, it is enough to check for the case m ≥ 2. As a consequence of
larkson’s inequality, we get∫

Ω

|∇up − ∇u∞|m ≤ 2m−1
(∫

Ω

|∇up|m +
∫
Ω

|∇u∞|m
)

.

y using (3.5), the non-degeneracy of F ∗ and Hölder’s inequality, we get that {∇up} is bounded in Lm(Ω)
ndependent of p for any p ≥ m, which implies that

∫
Ω

|∇up − ∇u∞|m is bounded by a constant independent
f p. It follows from the reverse Fatou lemma that

lim sup
p→∞

∫
Ω

|∇up − ∇u∞|m ≤
∫
Ω

lim sup
p→∞

|∇up − ∇u∞|m = 0,

here the last equality is due to the above almost-everywhere convergence.
Consequently, ∇up converges to ∇u∞ strongly in Lm(Ω) as p → ∞. It follows that the whole sequence

p converges to u∞ strongly in W 1,m(Ω) as p → ∞ for any 1 ≤ m < ∞, and the proof is complete. □
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