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123, avenue Albert Thomas, 87060 LIMOGES CEDEX, France
ghadir.jradi@unilim.fr

Received (Day Month Year)
Revised (Day Month Year)

Communicated by (xxxxxxxxxx)

We study a new variant of mathematical prediction-correction model for crowd motion.

The prediction phase is handled by a transport equation where the vector field is com-

puted via an eikonal equation ∥∇φ∥ = f , with a positive continuous function f connected
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to demonstrate the behavior in different scenarios
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1. Introduction

A Macroscopic model for a congested pedestrian flow involves treating the crowd

as a whole and is applicable for large crowds. It was first introduced in Ref. 4

and developed in Refs. 24, 25. In these models, the crowd behaves similarly to

a moving fluid in a spatio-temporal dynamic governed by a flow velocity vector

field U . Thus the master equation of each macroscopic crowd flows model is the

continuity equation:

∂tρ+ div(ρ U) = 0, (1.1)

where ρ = ρ(t, x) the density of the individuals, at time t ≥ 0 and at the position

x ∈ RN (N = 2), needs to accurate some admissible global distribution of the

population. Although there is much speculation, discussion, and experience to define

appropriate choice of flow velocity vector field U, there is no definitive universal

choice to describe crowed motion in general. The main difficulties lies in the fact that

while maintaining a suitable dynamic esteeming the admissible global distribution ρ,

U needs to manage both, the overall behavior of the crowd (for example of reaching

an objective like an exit, point of interest, avoidance of danger, etc.) and certain

local behavior of pedestrians (pedestrian in a hurry, pedestrian who adapts their

speed, pedestrian who avoids the crowd, pedestrian attracted by the crowd, etc).

Inspired by traffic flow models, many crowd motion models were developed essen-

tially in one-dimensional space (c.f. Refs. 10, 24, 25). In higher dimensions, Bellomo

et al., 3 and Dogbe16 proposed coupling the continuity equation with

∂tU + (U · ∇x)U = F (ρ, U),

where the motion is governed by F , which has two parts: a relaxation term towards

a definite speed, and a repulsive term to take into account that pedestrians tend

to avoid high-density areas. A barrier method was proposed by Degond14 wherein

the motion F depends on a pressure that blows up when the density approaches a

given congestion density. Piccoli and Tosin proposed another class of models in the

framework of a time-evolving measure in Refs. 36, 37. In their model the pedestrian’s

velocity is composed of two terms: a desired velocity and an interaction velocity.

Roger Hughes proposed a completely different approach to describing pedestrian

dynamics in Ref. 26, where a group of people wants to leave a domain with one or

more exits/doors as quickly as possible. His main idea was to include some kind of

saturation effects in the vector field. He considered U = U [ρ] driven by the gradient

of a potential Φ and weighted by a nonlinear mobility f = f(ρ). More precisely

U = f(ρ)2∇Φ and ∥∇Φ∥ = 1/f(ρ),

where mobility includes saturation effects, i.e., degenerate behavior when approach-

ing a given maximum density ρmax (assumed to be known); for instance one can

take f(ρ) = (ρ − ρmax)
2 among others. See also Ref. 11 and Ref. 27 for further

details.
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To handle the local behaviors of pedestrians, we go here with second order

PDE for crowed motion to perform congestion phenomena which may appear when

considering a velocity field U looking out solely to the exists (doors). The main

idea is to incorporate, within U , a vector field V with an overview looking out to

the exit and some kind of patch W , a vector filed with a local view looking out

to the allowable neighbor positions taking into account the local distribution of

pedestrians. To come out with U through this perspective, we process by splitting

the dynamic into two instantaneous phases: a first one, known as the prediction

phase, where the pedestrians move along the given vector filed V, the so called

spontaneous velocity field, and a second phase, the correction, which generates a

patch W that enables the pedestrian to move along allowable local paths to avoid

congestion and maintain admissible global distribution of the pedestrians. A typical

example of this point of view is the constrained diffusion-transport equation as

demonstrated in the pioneering work by B. Maury et al., 32 through a predicting-

correcting algorithm using a gradient flow in the Wasserstein space of probability

measures. In this paper, we use a new manner to handle this perspective. In contrast

with 32 where the author straighten up the density using some kind of projection

in W2−Wasserstein space in the correction phase, our approach is based on a new

version of minimum flow problem. The approach is flexible and makes it possible

to integrate several scenarios to deal with congestion. The reader can consult the

paper28 for a general introduction and overview of the approach. In particular it

allows to retrieve and compute otherwise the typical model of B. Maury and al.,

where the patch W = W [ρ] is traced strictly in the so called congested/saturated

regions as follow

W [ρ] = −∇p, with p ≥ 0 and p(ρ− 1) = 0. (1.2)

Here ρ ≡ 1 workouts the utmost distribution of the population in Ω. Therefore, via

this approach, the proposed system reads
∂ρ

∂t
+ div(ρ (V −∇p)) = 0

p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ− 1) = 0.

(1.3)

Equation p(ρ − 1) = 0 with the assumptions p ≥ 0 and 0 ≤ ρ ≤ 1, implies that

in the uncongested area, i.e., the zone [0 ≤ ρ < 1], the parameter p = 0, and

consequently the term −div(ρ∇p) is inactive. In this case, the evolution of density

is governed only by the continuity equation. However, in the saturated zone [ρ = 1],

the condition p(ρ− 1) = 0 implies that p is possibly strictly positive in such a way

that congestion can be activated by operator −div(ρ∇p).

Furthermore, the approach enables to build a new model based on granular

dynamic like in sandpile, presuming that individuals behave like grains in the con-

gested zones. In some sense, at the microscopic level, the individuals travel by

accruing randomly to the crowed, being placed either upon a heretofore unoccupied

position in the direction of the exit or else upon the top of the stack of the crowd.
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Moreover, the local movement of the individuals may be weighted by a given func-

tion k connected to the speed of the spontaneous local movement. In this case, we

prove that the patch is given by

W [ρ] = −m∇p (1.4)

with unknowns m and p satisfying

m ≥ 0, p ≥ 0, |∇p| ≤ k, p(ρ− 1) and m (|∇p| − k) = 0. (1.5)

Herem ≥ 0 is Lagrange multiplayer associated with the additional constraint |∇p| ≤
k. The approach enables also to handle and integrate different boundary conditions.

Neumann boundary condition is connected to the crossing boundary amount, and

Dirichlet is connected to the possibility of crossing some parts of the boundary with

different charges.

After all, via this approach, we introduce the new model of granular type :

∂ρ

∂t
+ div(ρ (V −m∇p)) = 0

0 ≤ ρ ≤ 1, p ≥ 0, |∇p| ≤ k

p(ρ− 1) = 0, m(|∇p| − k) = 0,

(1.6)

subject to mixed boundary conditions (not necessary homogeneous), to describe a

crowd motion where the movement of the agent is of granular type like in sandpile.

In this paper, we propose its numerical study based on a new manner to handle the

predicting-correcting algorithm to build the patch W . Over and above the transport

equation (1.1), we proceed using as well a new version of minimum flow problem

for optimal assignation as a step in the process to find the right assignment of the

pedestrian. Roughly speaking, in the correction step we put together tow nested

optimization procedures: a computation of a minimum flow with gainful assignment

towards a specific part of the boundary (towards the exit) for arbitrary target, and

then a coming up with the right target among all admissible ones. We show how one

can retrieve and compute otherwise the typical model of B.Maury et al., 32 that we

call up above. Then, we focus on the new model based on granular dynamics-like

for sandpile.

The theoretical study of (1.6) is a challenging problem, especially existence and

uniqueness questions, that we’ll treat likely in forthcoming works. Recall that, the

case where the PDE is of diffusive type like in (1.3), the model is very employed

to describe the behavior of population subject to global behavior governed by a

vector field V and a local one governed by the patch W [ρ] (c.f. Refs. 32, 33, 34, 35

and the references therein). The uniqueness of a solution is a hard issue for these

kind of problems that was treated recently by the second author in Ref. 30 (see also

Refs. 15, 13).
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Organization of the paper.

This paper is organized as follows. In Section-2 we present our model, we give the

details of each of its steps and we discuss two peculiar related PDEs to this model as

well as some duality results on which our algorithm reposes. In Section-3, we show

how to discretize the model. Since the approximation of the continuity equation

is more or less classical, the novelty will be the use of a primal-dual method to

solve the Beckmann-like problem. More particularly, this is given in Algorithm-3.

In Section-4 we given several examples to illustrate our approach and we compare

with some related works. Finally, we recall some tools and give some technical proofs

in the Appendix.

2. The model

We consider an exit scenario, where Ω ⊂ RN (N = 2) is a bounded open set with

regular boundary ∂Ω = ΓN ∪ ΓD. The set Ω represents the region where the crowd

is moving, ΓN represents the (impenetrable) walls and ΓD the exits/doors.

2.1. Minimum flow problem

The key idea concerning the minimum flow problem goes back to Beckmann.2 It

consists in finding the optimal traffic flow field Φ between the two distributions

given by µ1 and µ2. That is to find the vector field Φ which satisfies the divergence

equation

−div(Φ) = µ1 − µ2 in Ω, (2.1)

and minimize a total cost of the traffic
∫
F (x,Φ(x))dx, where F : Ω×RN → R+ is

a given function assumed to be at least continuous and convex with respect to the

second variable. The equation (2.1) needs to be understood in the sense of D′(Ω). In

particular, the equation assigns a fixed normal trace to Φ on ∂Ω which is connected

to the formal values of µ1 − µ2 on ∂Ω.

Here, we use a new variant to handle the pedestrian flow and carried out the

patch W for the spontaneous velocity field when the pedestrian is hindered by the

other one. Indeed, we work with a modified traffic cost which handles some kind of

gainful assignment towards a specific part of the boundary ΓD. More precisely, we

consider the following momentum cost of the traffic

M(Φ) :=

∫
Ω

F (x,Φ(x)) dx−
∫
ΓD

g(x) Φ · ν dx,

where Φ · ν denotes the normal trace of Φ and g patterns a given gainful charge

for the assignment towards ΓD. Of course, for the optimization problem we have in

mind we need to keep unrestricted the normal trace of Φ on ΓD. Thus, the balance

equation (2.1) turns into

−div(Φ) = µ1 − µ2 in D′(Ω \ ΓD). (2.2)
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See here, that the normal trace of Φ is left free on ΓD and assigned to be equal to

(µ1 − µ2) ΓN on ΓN . For instance, working with µ1 and µ2 supported in Ω, we

keep unrestricted the normal trace of Φ on ΓD but assigned it to 0 on ΓN .

This being said, we consider the transportation cost associated with given den-

sities µ1 and µ2 to be

infΦ

{∫
Ω
F (x,Φ(x)) dx−

∫
ΓD

g(x) Φ · ν dx : − div(Φ) = µ1 − µ2 in D′(Ω \ ΓD)
}
.

(2.3)

Actually, for any arbitrary distributions µ1 and µ2, the optimization problem (2.3)

aims to minimize both the transportation between µ1 and µ2, in Ω and towards ΓD,

by means of the cost function F in Ω, and the transportation towards the boundary

ΓD paying the gainful charge g(x) for each target position x ∈ ΓD. Moreover, the

new formulation enables to handle as well a provided incoming (or outgoing) flux

on the remaining part ΓN .

Notice here, that one needs to be careful with the notion of trace of Φ on the

boundary since it is not well defined for all Φ. However, for the quadratic case;

i.e.,F (x,Φ) = 1
2 |Φ|

2, one can work in

Hdiv :=
{
Φ ∈ L2(Ω) : div(Φ) ∈ L2(Ω)

}
,

to define rigorously Φ · ν on ΓD. Indeed, let γ0 : H1(Ω) → L2(Γ) be the linear and

continuous mapping satisfying γ0(u) = u|Γ for all u ∈ C(Ω), where Γ = ∂Ω. Then,

defining H1/2(Γ) = γ0(H
1(Ω)) and H−1/2(Γ) its dual, there exists a continuous

trace operator γν : Hdiv(Ω) → H−1/2(Γ) such that γν(Φ) = Φ · ν for any Φ ∈
D(Ω)N . Thanks to Gauss’s Theorem, we have

⟨γν(Φ), γ0(u)⟩H−1/2,H1/2 =

∫
Ω

Φ·∇udx+

∫
Ω

udiv(Φ)dx for all u ∈ H1(Ω),Φ ∈ Hdiv(Ω).

To simplify the presentation, we denote Φ · ν := γν(Φ), and moreover∫
ΓD

g(x) Φ · ν dx := ⟨γν(Φ), g̃⟩H−1/2,H1/2 ,

for a given for g̃ ∈ H1/2(Γ), such that g̃ = gχΓD
. Yet, one needs to assume that

such g̃ exists (see the assumptions in Section 2.3).

Before ending this section, let us recall that a similar problem to (2.3) appears

in Ref. 20 in the study of Hamilton-Jacobi equation (see also Refs. 22 and 21).

It appears also on a different form in the study of some Sobolev regularity for

degenerate elliptic PDEs in Ref. 40. The approach used in Ref. 40 may be written

here as follows

infΦ,υ

{∫
Ω
F (x,Φ(x)) dx−

∫
ΓD

g(x) υ(x) dx : −div(Φ) = µ1 − µ2 in D′(Ω \ ΓD)

and Φ · ν = υ on ΓD

}
.

(2.4)
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In this paper, we’ll use directly formulation of the type (2.3). At last, we notice

that in general, the infimum may be reached for singular Φ (like for homogeneous

F which will be studied in the next section). This may be related to the question

of regularity of the transport density in mass transportation (see for instance the

recent paper18 and the references therein about this kind of questions).

2.2. The algorithm

The main idea of prediction-correction algorithm is to split the dynamic into instan-

taneous successive processes : prediction then correction. The prediction step aims

beforehand to move the population through a spontaneous velocity field. For this

to happen, we use simply the transport equation (1.1) with U = V, where V derives

from a potential governed by fast exit access trajectories. Afterward, as though the

output of the prediction may be not feasible, we propose to catch up the upright

deployment by applying the minimum flow assignment process (2.3) to the output

of the prediction step; that we denote for the moment by ρ̃ and which should be

a priori an L∞ function. Moreover, assuming that the dynamic is subject to some

supply of population through incoming issues included in ΓN , we propose to take

µ1 = ρ̃ Ω+ η ΓN ,

where η precisely designates the incoming supply through ΓN . In this case, the

constraint −div(Φ) = µ1 − ρ in D′(Ω \ ΓD) is equivalent to say

−div(Φ) = ρ̃− ρ in D′(Ω) and Φ · ν = η on ΓN .

The correction step we propose to construct ρ requires to solve precisely the follow-

ing optimization problem

infΦ,ρ

{∫
Ω
F (x,Φ(x)) dx−

∫
ΓD

g(x) Φ · ν dx : 0 ≤ ρ ≤ 1, −div(Φ) = ρ̃− ρ in D′(Ω)

and Φ · ν = η on ΓN

}
.

(2.5)

The right space for each terms in (2.5) will be given in the following section.

See that the output of the correction step provides as well the correction associated

with ρ̃ and the suitable flow for the adjustment of the dynamic. We will see in the

following section how the optimal flux Φ enables to carry out the patch W for the

spontaneous velocity field when this is necessary.

So, the algorithm may be written as follows : we consider T > 0 a given time

horizon. For a given time step τ > 0, we consider a uniform partition of [0, T ] given

by tk = kτ, k = 0, . . . , n− 1. Supposing that we know the density of the population

ρk at a given step k, starting by ρ0. Then, we superimpose successively the following

two steps :
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• Prediction: In this predictive step, the density of population trends to

grow up into

ρk+ 1
2
= ρ(tk+ 1

2
),

where ρ is the solution of the transport equation

∂tρ+ div(ρ V ) = 0 in [tk, tk+ 1
2
[, (2.6)

with ρ(tk) = ρk. Here, V is spontaneous velocity field given by the geodesics

toward the exit. To buils its corresponding potential φ, we propose to solve

the eikonal equation 
∥∇φ∥ = f in Ω,

φ = 0 on ΓD,

(2.7)

where f is a given positive continuous function. Then, the spontaneous ve-

locity field V is given by V := −∇φ. One sees here that the solution of

(2.7) (in the sense of viscosity) gives the speedy path to the exit ΓD. The

potential φ corresponds to the expected travel time to maneuver towards

an exit. In particular, φ is proportional to f which may template space

movement of traffic . As we will see, we can upgrade the spontaneous veloc-

ity field by taking f depending on the density on real time (like in Hugue’s

model).

• Correction: In general it is not expected that ρk+ 1
2
to be an allowable

density of pedestrian, since this value may evolve outside the interval [0, 1].

We propose then to proceed by the minimum flow process we introduced

above to find the right apportionment of the pedestrian. That is to find

ρk+1 using the optimization problem (2.5). More precisely, we propose to

consider ρk+1 given by the following optimization problem

argminρ infΦ

{∫
Ω
F (x,Φ(x)) dx−

∫
ΓD

g(x) Φ · ν dx : ρ ∈ L∞(Ω), 0 ≤ ρ ≤ 1,

Φ ∈ Ls(Ω)N , −τ div(Φ) = ρk+1/2 − ρ in D′(Ω) and Φ · ν = η on ΓN

}
,

(2.8)

where 1 ≤ s < ∞ is chosen with respect to the assumptions on F and η. To

simplify the presentation, we assume that the supply through ∂Ω is null ;

i.e. η ≡ 0.

2.3. Related PDE

The application F : Ω × RN → [0,∞) is assumed firstly to be continuous. As a

primer practical case, one can consider the quadratic case, i.e.,

F (x, ξ) =
1

2
|ξ|2, for any x ∈ Ω and ξ ∈ RN .
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More sophisticated situations arise by considering non-homogeneous F that weights

the cost according to space variables; like for instance

F (x, ξ) =
c(x)

s
|ξ|s, for any x ∈ Ω and ξ ∈ RN , (2.9)

with 1 < s < ∞. In particular, with the parameter c one can scale the cost by

focusing on and/or avoiding certain regions in space. A formal computation using

duality à la Fenchel-Rockafellar (see e.g., Ref. 19) implies that the infimum in (2.5)

should coincide with

inf
p

{∫
p+(x) dx+

1

s′

∫
c(x)1−s′ |∇p(x)|s

′
dx−

∫
p(x) ρ̃(x) dx : p ∈ W 1,s′(Ω), p = g on ΓD

}
,

(2.10)

where s′ is the conjugate index of s, i.e., it satisfies 1
s + 1

s′ = 1. Moreover, p and

(ρ,Φ) are solutions of both problems respectively, if and only if (p, ρ,Φ) is a solution

of the following PDE

ρ− τ div(Φ) = ρ̃

ρ ∈ Sign+(p), Φ = c1−s′ |∇p|s′−2∇p

 in Ω,

Φ · ν = 0 on ΓN ,

p = g on ΓD,

(2.11)

where Sign+ is the maximal monotone graph given by

Sign+(r) =


1 for r > 0

[0, 1] for r = 0

0 for r < 0

for r ∈ R.

In other words, ρ ∈ Sign+(p) is equivalent to says that 0 ≤ ρ ≤ 1 and p(1− ρ) = 0

in Ω. In this paper, we focus on the case where s = 1. For the treatment of the other

cases, one can see Ref. 28 for more details. In particular, one sees that the quadratic

case is closely connected to the system (1.3) which was proposed by B. Maury et

al., 32 in the framework of gradient flows in the Wasserstein space of probability

measures. As to the case (2.9), dynamical model which comes off following our

approach is given by some kind of non linear s′−Laplace equation
∂ρ

∂t
+ div(ρ (V −W )) = 0, W = c1−s′ |∇p|s

′−2∇p

p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ− 1) = 0

 in (0,∞)× Ω (2.12)

subject to non-homogeneous boundary conditions
Φ · ν = 0 on (0,∞)× ΓN ,

p = g on (0,∞)× ΓD.

(2.13)
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Notice that we use in (2.12), the fact that ∇p = ρ ∇p, which is connected to

ρ ∈ Sign+(p).

As we said above, we focus here on the case where

F (x, ξ) = k(x) |ξ|, for any (x, ξ) ∈ Ω× RN , (2.14)

where 0 ≤ k ∈ C(Ω). This case is closely connected to granular dynamic like sandpile

(see Ref. 17 and the references therein). In other words the individuals behaves like

grains of sand (see Refs. 23 and also 29 for a stochastic microscopic description of

the granular dynamic) in the congestion zone and not like a fluid as follows from

the quadratic case. A peculiar choice may be the same function f as in (2.7). In

other words, we may assume that the correction is taken respect to the geodesic

leading to ΓD.

Remark 2.1. Working with F (x,Φ) = |Φ| is closely connected to gradient flow in

the Wasserstein space of probability measures equipped withW1. The link may be

established at least formally by using the results of Ref. 1.

To treat the problem (2.5), we assume that the boundary data g is such that

(H1): the exists g̃ ∈ W 1,∞(Ω), such that γ0(g̃) = 0 on ΓN

∇g̃(x) ∈ G(x) :=
{
ξ ∈ RN : |ξ| ≤ k(x)

}
, a.e. in Ω. (2.15)

and

g̃ = g on ΓD, (2.16)

Then, for any µ ∈ Ls(Ω), we define

F(µ) :=
{
Φ ∈ Ls(Ω)N : −div(Φ) = µ in Ω and Φ · ν = 0 on ΓN

}
.

Remind here, that −div(Φ) = µ in Ω and Φ · ν = 0 on ΓN needs to be understood

in the sense that∫
Ω

Φ · ∇ξ dx =

∫
Ω

µ ξ dx, for any ξ ∈ W 1,s′

ΓD
(Ω), (2.17)

where W 1,s
ΓD

(Ω) denote the set of W 1,s(Ω) functions with null trace on ΓD.

To come up with the right continuous (with respect to time) evolution problem

associated with our algorithm, we are interested into the interpretation, in terms of

PDE, of the solution of the problem

N (ρ̃) := inf
Φ,ρ

{
τ

∫
Ω

k(x) |Φ(x)| dx− τ

∫
ΓD

g Φ · ν dx : τ Φ ∈ F(ρ̃− ρ) and ρ ∈ K1

}
,

(2.18)

where 0 ≤ ρ̃ ∈ Ls(Ω) is fixed and K1 is the set of admissible densities:

K1 = {ρ ∈ L∞(Ω) : 0 ≤ ρ ≤ 1 a.e. in Ω}.
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See that, all the terms in N (ρ̃) are well defined. Indeed, since Φ ∈ Ls(Ω)N and

∇ · Φ ∈ Ls(Ω), the normal trace of Φ is well defined on ΓD and ΓN . Actually∫
ΓD

g Φ · ν dx needs to be understood in the sense of∫
ΓD

g Φ · ν dx = ⟨Φ · ν, g̃⟩W−1/s,s(ΓD),W 1−1/s′,s′ (ΓD).

Our main result here is the following

Theorem 2.1. For any 0 ≤ ρ̃ ∈ Ls(Ω) , we have

N (ρ̃) = max
p∈Gk

{∫
Ω

ρ̃ p dx−
∫
Ω

p+ dx
}
:= D∞

g (ρ̃), (2.19)

where

Gk :=
{
z ∈ W 1,∞(Ω) : z = g on ΓD and |∇z(x)| ≤ k(x) a.e. x ∈ Ω

}
.

Moreover,

N (ρ̃) = min
ρ∈K1

inf
τΦ∈F(ρ̃−ρ)

{
τ

∫
Ω

k(x) |Φ(x)| dx− τ

∫
ΓD

g(x) Φ · ν dx

}
, (2.20)

and, if ρ and p are optimal solutions of both problems N (ρ̃) and D∞
g (ρ̃) respectively,

then p ∈ Gk, ρ ∈ K1, ρ ∈ Sign+(p), a.e. in Ω and∫
Ω

(ρ̃− ρ) (p− ξ) dx ≥ 0, for any ξ ∈ Gk. (2.21)

Remark 2.2. The assumption (H1) gives a compatibility condition on g to ensure

that the set Gk is not empty. In particular, one sees that φ, the solution of (2.7),

lives in Gk.

To prove Theorem 2.1, we use Von Neumann-Fan minimax theorem that we

remind below

Theorem 2.2 (Von Neumann-Fan minimax theorem, see for instance5).

Let X and Y be Banach spaces. Let C ⊂ X be nonempty and convex, and let D ⊂ Y

be nonempty, weakly compact and convex. Let g : X×Y → R be convex with respect

to x ∈ C and concave and upper-semicontinuous with respect to y ∈ D, and weakly

continuous in y when restricted to D. Then

max
y∈D

inf
x∈C

g(x, y) = inf
x∈C

max
y∈D

g(x, y).

Proof. [Proof of Theorem 2.1] Since ρ̃ − ρ ∈ Ls(Ω), we know that F(ρ̃ − ρ) ̸= ∅.
Moreover, since

N (ρ̃) = inf
ρ∈K1

inf
τΦ∈F(ρ̃−ρ)

{
τ

∫
Ω

k(x) |Φ(x)| dx− τ

∫
ΓD

g(x) Φ · ν dx

}
, (2.22)
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by 20 , we get

N (ρ̃) = inf
ρ∈K1

max
p∈Gk

{∫
(ρ̃− ρ) p dx

}
. (2.23)

Using Von Neumann-Fan minimax theorem, by taking X = Ls(Ω), Y = W 1,∞(Ω),

g(ρ, p) =
∫
(ρ̃ p− ρ) dx, for any (ρ, p) ∈ X ×Y, C = K1 and D = Gk, we deduce that

N (ρ̃) = max
p∈Gk

inf
ρ∈K1

{∫
(ρ̃− ρ) p dx

}
= max

p∈Gk

{∫
ρ̃ p dx−

∫
p+ dx

}
. (2.24)

Using L∞-weak∗ compactness of K1 and Ls-weak compactness of Gk, it is not diffi-

cult to see that

inf
ρ∈K1

max
p∈Gk

{∫
(ρ̃− ρ) p dx

}
= min

ρ∈K1

max
p∈Gk

{∫
(ρ̃− ρ) p dx

}
. (2.25)

This gives (2.20). To prove the last part of the theorem, we see that a couple

(ρ, p) ∈ K1 × Gk satisfies ρ ∈ Sign+(p) a.e. in Ω and (2.21) if and only if∫
Ω
ρ̃ p dx−

∫
Ω
p+ dx =

∫
(ρ̃− ρ) p dx = maxξ∈Gk

{∫
(ρ̃− ρ) ξ dx

}
. (2.26)

For the first implication, we see that by taking

ρ = argminρ∈K1

{
inf

τΦ∈F(ρ̃−ρ)

{
τ

∫
Ω

k(x) |Φ(x)| dx− τ

∫
ΓD

g(x) Φ · ν dx

}}
and

p = argmaxp∈Gk

{∫
Ω

ρ̃ p dx−
∫
Ω

p+ dx
}
,

we have

D∞
g (ρ̃) =

∫
Ω

ρ̃ p dx−
∫
Ω

p+ dx ≤
∫
(ρ̃− ρ) p dx ≤ max

p∈Gk

{∫
(ρ̃− ρ) p dx

}
= N (ρ̃).

So, using (2.19), we deduce (2.26) and then (ρ, p) satisfies (2.21) and ρ ∈ Sign+(p)

a.e. in Ω. At last, the converse is a simple combination between (2.20), (2.26) and

the fact that

N (ρ̃) ≥ D∞
g (ρ̃).

Remark 2.3.

(1) It is known that the optimal flux in (2.20) is not reached for a Lebesgue vector

valued function Φ, in general. Indeed, since the structure of F, one expects the

optimal flux to be a Radon measure vector valued function Φ. However, one

sees formally that, if (ρ,Φ) and p are solutions of both problems N (ρ̃) and D(ρ̃)

respectively, then ρ ∈ Sign+(p), a.e. in Ω, Φ · ∇p = k |Φ| in Ω and

τ

∫
Ω

Φ · ∇ξ dx =

∫
Ω

(ρ̃− ρ) ξ dx, for any ξ ∈ W 1,s′

ΓD
(Ω). (2.27)
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Yet, one needs to be careful with the treatment of Φ ·∇p, since Φ is not regular

in general. Here one needs, to use the notion of tangential gradient of p (see

e.g., Ref. 6) to handle the related PDE.

(2) In connection with Evans-Gangbo formulation, the corresponding PDE may be

written as 
ρ− τ div(W ) = ρ̃, W = m∇p

m ≥ 0, p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ− 1) = 0

|∇p| ≤ k, m(|∇p| − k) = 0

 in Ω, (2.28)

subject to boundary condition
Φ · ν = 0 on (0,∞)× ΓN ,

p = g on (0,∞)× ΓD.

(2.29)

See also, that using the relation between ρ and p, the equation in (2.28) may

be written as ρ− τ div(ρW ) = ρ̃.

(3) As a formal consequence of Theorem 2.1, under the assumptions (H1)-(H2),

the algorithm in Section 2.2 turns out in solving successively two PDEs, a

transport equation and a nonlinear second order equation. This enables also to

establish a continuous model in terms of nonlinear PDE. This is summarized

in the following items.

(a) The sequence ρ1/2, ρ1, . . . , ρk, ρk+1/2, ρk+1, . . . , ρn given by the algorithm in

Section 2.2 is characterized by: for each k = 0, . . . , n− 1, we have

• Prediction: ρk+ 1
2
= ρ(tk+ 1

2
), where ρ is the solution of the transport

equation :

∂tρ+ div(ρ V ) = 0 in [tk, tk+ 1
2
[, (2.30)

with ρ(tk) = ρk, V is a given vector field. For instance V = −∇φ and φ

is the solution of the eikonal equation (2.7).

• Correction: ρk+1 is a solution of the PDE



ρk+1 − τ div(ρk+1 W ) = ρk+1/2, W = m∇pk+1

m ≥ 0, pk+1 ≥ 0, 0 ≤ ρk+1 ≤ 1, pk+1(ρk+1 − 1) = 0

|∇pk+1| ≤ k, m(k− |∇pk+1|) = 0

 in Ω,

Φ · ν = 0 on ΓN ,

pk+1 = g on ΓD.
(2.31)
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(b) Considering the application ρτ : [0, T ) → L∞(Ω) and pτ : [0, T ) → W 1,∞(Ω)

given by

ρτ (t) =


ρk+ 1

2
for any t ∈ [tk, tk+ 1

2
[

ρk+1 for any t ∈ [tk+ 1
2
, tk+1[

for k = 0, 1, . . . , n− 1,

and

pτ (t) =


0 for any t ∈ [tk, tk+ 1

2
[

pk+1 for any t ∈ [tk+ 1
2
, tk+1[

for k = 0, 1, . . . , n− 1,

one expects that

• ρτ → ρ and pτ → p as τ → 0,

• the couple (ρ, p) satisfies the following evolution PDE



∂ρ

∂t
+ div(ρ (V −W )) = 0, W = m∇p

m ≥ 0, p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ− 1) = 0

|∇p| ≤ k, m(|∇p| − k) = 0


in (0,∞)× Ω. (2.32)

subject to boundary condition
Φ · ν = 0 on (0,∞)× ΓN

p = g on (0,∞)× ΓD.

(2.33)

(4) See that the patch W is null outside the congestion zone [ρ = 1].

(5) It is important to remark here the faux gap in the Neumann boundary condition.

Indeed, (V − W ) · ν is the intrinsic normal flux on ΓN and not only W · ν.
To resolve this apparent incompatibility, one needs to work with V such that

V · ν = 0 on ΓN . Otherwise, one needs to change the boundary condition in

the problem on ΓN in the optimization problem (2.8) to handle the normal

flux coming from V (one can see for instance Ref. 28). Any way, for numerical

simulation, we work in the following section with V such V · ν = 0 on ΓN .

(6) Remember here, that the main operator which governs the correction step in

this case, given by 
−∇ · (m∇p) = µ

m ≥ 0, |∇p| ≤ k, m(|∇p| − k) = 0,

(2.34)

is well known in the study of sandpile (see Ref. 17 and the references therein).

The dynamic here is connected to a granular one. In other words the individuals

behaves like grains of sand (see Refs. 23 and also 29 for a stochastic microscopic
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description of the granular dynamic), in the congestion zone and not like a

standard fluid as follows from the quadratic case.

Remark 2.4. After all, the nonlinear PDE (2.32) is a new model we propose for

the description of dynamical population where the movement of the agent is of

granular type like in sandpile. In this paper, we are proposing its numerical study.

The theoretical study is a challenging problem for existence and uniqueness. This is

an open problem and will not be treated in this paper. Recall that, the case where

the PDE is of diffusive type the PDE is well used and studied. There is a huge

literature on this case, one can see the recent paper30 and the references therein for

more details.

Remark 2.5. Our approach enables also to consider vector field V depending on

the congestion. Indeed, it is possible to computed it just before the k−th prediction

step by taking the speedy path given the following eikonal equation
∥∇φ∥ = H(pk) in Ω,

φ = 0 on ΓD,

(2.35)

where H is a given positive continuous function, the evolution problem (2.32) needs

to be coupled with the system
V = −∇φ in Ω

∥∇φ∥ = H(p) in Ω,

φ = 0 on ΓD.

(2.36)

This is an interesting variant of Hugues model where the speedy path is computed

by taking into account the congestion of the crowd. Indeed, taking H a continuous

function such that H(p) takes instantaneously large value for positive p, enables

to avoid congestion zones. From theoretical point of view, the eikonal equation

turns out to be a well posed and stable problem since p and then H(p) are regular,

rather than ρ as in Hugues model. To improve the algorithm, we take in some

numerical computation f = f(p) in (2.7) to compute the spontaneous velocity field

V . The theoretical study of the corresponding evolution problem will be treated in

forthcoming works.

Remark 2.6 (Quadratic case). Before to end up this section let us summarize

here some formal results concerning the quadratic case (rigorous proofs may be

found in Ref. 28). The quadratic case corresponds to

F (x, ξ) =
1

2
|ξ|2, for any (x, ξ) ∈ Ω× RN .

The infimum in (2.8) coincides with

maxp
{∫

p(x) ρ̃(x) dx−
∫
p+(x)dx− τ

2

∫
|∇p(x)|2 dx : p ∈ H1(Ω), p = g on ΓD

}
.

(2.37)
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Moreover, p and (ρ,Φ) are solutions of both problems respectively, if and only if

(p, ρ,Φ) is a solution of the following PDE

ρ− τ div(Φ) = ρ̃, Φ = ∇p

ρ ∈ Sign+(p)

 in Ω,

Φ · ν = 0 on ΓN ,

p = g on ΓD.

(2.38)

In some sense, this implies that the quadratic case is closely connected to the system

(1.3) which was proposed by B. Maury et al., 32 in the framework of gradient flows

in the Wasserstein space of probability measures. And, moreover, the correction

step corresponds simply to the time Euler-Implicit discretization for the diffusion

process in (1.3).

Remark 2.7.

Notice here that even though our approaches (based on minimum flow problem),

provide the same continuous dynamics (at least in the quadratic case) with gradient

flow in the Wasserstein space of probability measures, both approaches are not the

same at discrete level. While, the correction with this approach is recovered by a

projection with respect to W2 on the set {ρ ∈ L∞(Ω) : 0 ≤ ρ ≤ 1 a.e. in Ω}, our
approach provides the correction by solving an elliptic problem through a minimum

flow problem. As far as we know, these are not the same even though one can be

considered as an approximation of the other.

3. Numerical approximation

3.1. Formulation and discretization

As discussed in Section-2, the approximation of the density ρ is performed via a

prediction-correction strategy. The first step (prediction) consists in the resolution

of the continuity equation (2.6) which will be done using an Euler scheme for the

time discretization, whereas the term div(V ρ) is discretized using finite volumes.

The second step (correction or projection) relies on a minimum flow problem which

will be solved using a primal dual algorithm (PD). To begin with, let us give details

concerning the discretization of the problems (2.6)-(2.8).

Domain discretization: In this section, we solve numerically (2.6) and (2.8)

on the domain Ω shown on Figure 1. This domain represents a room surrounded

by walls which we call ΓN and has an exit door ΓD. The domain is divided into a

set of m× n control volumes of length h and width equal to h. We denote by Ci,j

the cell at the position (i, j) and by Ψi,j is the average value of the quantity Ψ on

Ci,j . At the interface of Ci,j , ωi+ 1
2 ,j

, ωi− 1
2 ,j

, ωi,j+ 1
2
and ωi,j− 1

2
are the in/out flow

quantities (see Figure-1).
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Exit Door

Fig. 1. Discretization of the domain Ω.

We define discrete divergence is defined by:

(divh Φ)i,j =
Φ1

i+ 1
2 ,j

− Φ1
i− 1

2 ,j

h
+

Φ2
i,j+ 1

2

− Φ2
i,j− 1

2

h
. (3.1)

To take into account the Neumann boundary condition Φ ·ν = 0 on ΓN , we impose:

• Φ1
1
2 ,j

= 0, for 1 ≤ j ≤ n,

• Φ1
m+ 1

2 ,j
= 0, if ((m+ 1

2 )h, jh) ∈ ΓN ,

• Φ2
i, 12

= 0, for 1 ≤ i ≤ m,

• Φ2
i,n+ 1

2

= 0, for 1 ≤ i ≤ m.

We can rewrite this in a more compact way

(divh Φ)
1
i,j = D1

pΦ
1
i,j , if ((m+

1

2
)h, jh) ∈ ΓD,

(divh Φ)
1
i,j = D1

mΦ1
i,j , if ((m+

1

2
)h, jh) ∈ ΓN ,

(divh Φ)
2
i,j = D2Φ2

i,j ,

(3.2)

where the matrices D1
m, D1

p, D
2 are recalled in Appendix-Appendix A. Then, we

define the discrete gradient operator as follows:

(∇hp)
1
i,j = −t D1

pp(i, j), if ((m+
1

2
)h, jh) ∈ ΓD,

(∇hp)
1
i,j = −t D1

mp(i, j), if ((m+
1

2
)h, jh) ∈ ΓN ,

(∇hp)
2
i,j = −t D2p(i, j).

(3.3)

This being said, one can easily check that divh = −∇∗
h.

Discretization of the transport equation (2.6) : We use a splitting method

as follows. Given a final time T > 0 and a timestep τ > 0, we decompose the interval
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[0, T ] into subintervals [tk, tk+ 1
2
] and [tk+ 1

2
, tk+1], with k = 0, . . . , n − 1. On each

interval [tk, tk+ 1
2
] we solve the following continuity equation{

∂tρ+ div(V ρ) = 0

ρ(tk) = ρk−1,
(3.4)

to obtain ρk+
1
2 , where V = (V x, V y) is the velocity field given by V = −∇D, and

D being the distance (not necessary euclidean) to the boundary ΓD given by the

eikonal equation (2.7) whose resolution is recalled in Appendix-Appendix B. Solving

(3.4) can be done by combining a finite difference method in the time variable

combined with a 2D finite volume method in the space variable. We approximate

the term div(V ρ) in the cell Ci,j = [xi− 1
2 ,j

, xi+ 1
2 ,j

]× [yi,j− 1
2
, yi,j+ 1

2
] as follow:

(div(V ρ))i,j =
1

∆x

(
Aup(V x

i+ 1
2 ,j

, ρki+ 1
2 ,j

,−ρki+ 1
2 ,j

)−Aup(V x
i− 1

2 ,j
, ρki− 1

2 ,j
,−ρki− 1

2 ,j
)
)

+
1

∆y

(
Aup(V y

i,j+ 1
2

, ρki,j+ 1
2
,−ρki,j+ 1

2
)−Aup(V y

i,j− 1
2

, ρki,j− 1
2
,−ρki,j− 1

2
)
)
,

(3.5)

where (div(V ρ))i,j the value of div(V ρ) in the cell Ci,j , (∆x,∆y) are the spatial

discretization, and

Aup(x, y, z) =

{
xy if x ≥ 0

xz if x < 0.

For the time disctization, we use the Euler explicit method to approximate the time

derivative of the density. The overall scheme can the be written as:

ρ
k+ 1

2
i,j − ρki,j

τ
+

1

∆x

(
Aup(V x

i+ 1
2 ,j

, ρki+ 1
2 ,j

,−ρki+ 1
2 ,j

)−Aup(V x
i− 1

2 ,j
, ρki− 1

2 ,j
,−ρki− 1

2 ,j
)
)

+
1

∆y

(
Aup(V y

i,j+ 1
2

, ρki,j+ 1
2
,−ρki,j+ 1

2
)−Aup(V y

i,j− 1
2

, ρki,j− 1
2
,−ρki,j− 1

2
)
)
= 0,

(3.6)

where ρ
k+ 1

2
i,j is the average value of ρ in the cell Ci,j = [xi− 1

2 ,j
, xi+ 1

2 ,j
] ×

[yi,j− 1
2
, yi,j+ 1

2
] at time (k + 1

2 )τ , and ρk
i+ 1

2 ,j
, V x

i+ 1
2 ,j

are the values of ρ and V at the

interface xi+ 1
2 ,j

at time kτ respectively. Similarly, (ρk
i− 1

2 ,j
V x
i− 1

2 ,j
), (ρk

i,j+ 1
2

, V y

i,j+ 1
2

)

and (ρk
i,j− 1

2

, V x
i,j− 1

2

) are the values, at time τk, of (ρ, V ) at the interface xi− 1
2 ,j

,

yi,j+ 1
2
and yi,j− 1

2
respectively. Notice that in practice, we take ∆x = ∆y = h,

where h is the mesh size introduced above.

Using the upwind scheme we have and substituting in (3.6), the density ρ
k+ 1

2
i,j

can be written as (see also 39):

ρ
k+ 1

2
i,j = ρki,j −

τ

h

(
Aup(V x

i+ 1
2 ,j

, ρki,j , ρ
k
i+1,j)−Aup(V x

i− 1
2 ,j

, ρki−1,j , ρ
k
i,j)
)

− τ

h

(
Aup(V y

i,j+ 1
2

, ρki,j , ρ
k
i,j+1)−Aup(V y

i,j− 1
2

, ρki,j−1, ρ
k
i,j)
)
.

(3.7)
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We consider that no flux is entering the room from the walls at ΓN . This is

equivalent to impose ρk
i− 1

2 ,j
V x
i− 1

2 ,j
= 0 and ρk

i,j− 1
2

V y

i,j− 1
2

= 0 at i = 1 and j =

1 respectively. The scheme (3.7) is conservative, stable under the CFL condition

∥V ∥∞ τ
h ≤ 1

2 . This condition can be obtained using von Neumann stability analysis.
9,12 We summarize this in the following algorithm:

Algorithm 1. Prediction step

1st step. Initialization: Compute the velocity V = (V x, V y). Choose ∆x = ∆y =

h and τ such ∥V ∥∞ τ
h ≤ 1

2 and take a initial density given by ρki,j at time kτ .

2nd step. Update the density at time (k + 1
2 )τ by

ρ
k+ 1

2
i,j = ρki,j −

τ

h
[Aup(V x

i+ 1
2 ,j

, ρki,j , ρ
k
i+1,j)−Aup(V x

i− 1
2 ,j

, ρki−1,j , ρ
k
i,j)]

− τ

h
[Aup(V y

i,j+ 1
2

, ρki,j , ρ
k
i,j+1)−Aup(V y

i,j− 1
2

, ρki,j−1, ρ
k
i,j)].

(3.8)

Notice that in the case where Vx > 0 and Vy > 0, (3.7) reduces to

ρ
k+ 1

2
i,j = ρki,j −

τ

h
[ρki,jV

x
i+ 1

2 ,j
− ρki−1,jV

x
i− 1

2 ,j
]− τ

h
[ρki,jV

y

i,j+ 1
2

− ρki,j−1V
x
i,j− 1

2
]. (3.9)

Since the obtained density ρk+
1
2 may violate the constraint ρ ≤ 1, the next step

is to handle congestion by solving the following minimum flow problem

inf
(ρ,Φ)

{∫
Ω

k(x)|Φ(x)|dx : − τ div(Φ) = ρk+
1
2 − ρ in Ω, Φ · ν = 0 on ΓN and 0 ≤ ρ ≤ 1

}
,

(3.10)

where k ≥ 0 is a continuous function and, for the simplicity of the presentation, we

take vanishing g.

Discretization of the minimum flow problem (3.10) : First, let us rewrite

(3.10) in the form

(M) : min
(ρ,Φ)

A(ρ,Φ) + IC(Λ(ρ,Φ)), (3.11)

where (we omit the variable τ to lighten the notation)

A(ρ,Φ) =

∫
Ω

τk(x)|Φ(x)|dx+ I[0,1](ρ), Λ(ρ,Φ) = ρ− τ div Φ and B = I{
ρk+1

2

}.
Here IC stands for the indicator function of C and is given by:

IC(a) =
{
0 if a ∈ C

+∞ if a /∈ C.
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This problem can be efficiently solved by Chambolle-Pock’s primal-dual algorithm

(PD) (c.f. Ref. 7).

Based on the discrete gradient and divergence operators, we propose a discrete

version of (M) as follows

(M)d : min
(ρ,Φ)

{
h2

m+1∑
i=1

n+1∑
j=1

τki,j∥Φi,j∥+ I[0,1](ρ) + IC(Λh(ρ,Φ))
}

(3.12)

where C :=
{
(ai,j) : ai,j = ρ

k+ 1
2

i,j , ∀(i, j) ∈ J1,mK × J1, nK
}
, Λh(ρ,Φ) = ρ −

τ divh Φ and ki,j is the value of k in Ci,j . In other words, the discrete version

(M)d can be written as

min
(ρ,Φ)

Ah(ρ,Φ) + Bh(Λh(ρ,Φ)), (3.13)

or in a primal-dual form as

min
(ρ,Φ)

max
p

Ah(ρ,Φ) + ⟨u,Λh(ρ,Φ)⟩ − B∗
h(p), (3.14)

where

Ah(ρ,Φ) = h2
m+1∑
i=1

n+1∑
j=1

τki,j∥Φi,j∥+ I[0,1](ρ) and Bh = IC . (3.15)

Notice that in this case, (B.2) has a dual problem that reads

min
ρ∈X

0≤ρ≤1

max
p∈X

p=0 on ΓD

h2


m∑
i=1

n∑
j=1

pi,j(ρ
k+ 1

2
i,j − ρi,j) : ∥∇hpi,j∥ ≤ ki,j

 . (3.16)

Then (PD) algorithm8 can be applied to (M)d as follows:

Algorithm 2. (PD) iterations

1st step. Initialization: choose α, β > 0, θ ∈ [0, 1], ρ0,Φ
0 and take u0 =

Λh(ρ
0,Φ0), p̄0 = p0

2nd step. For l ≤ Itermax do

(ρl+1,Φl+1) = ProxβAh

(
(ρl,Φl)− βΛ∗

h(p̄
l)
)
;

pl+1 = ProxαB∗
h

(
pl + αΛh(ρ

l+1,Φl+1)
)
;

p̄l+1 = pl+1 + θ(pl+1 − pl).

Recall here that the proximal operator is defined through

ProxαE(p) = argmin
q

1

2
∥p− q∥2 + αE(q). (3.17)
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3.2. Computation of the proximal operators

See that for the functional Ah and B∗
h can be computed explicitly. Indeed, the

functional Ah is separable in the variables ρ and Φ :

Ah(ρ,Φ) = I[0,1](ρ) + ∥Φ∥1.

So, ProxηAh
is the some of a projection in the first component and the so-called

soft-thresholding. Namely

(ProxAh
(ρ,Φ))i,j =

(
max(0,min(1, ρi,j)),max(0, 1− 1

|Φi,j |
)Φi,j

)
. (3.18)

As to B∗
h, in order to compute ProxαB∗

h
, we make use of Moreau’s identity

p = ProxαB∗
h
(p) + αProxα−1Bh

(p/α), (3.19)

and the fact that Proxα−1Bh
(a, b) is given simply by the projection onto C. Conse-

quently, (
ProxαB∗

h
(p)
)
i,j

=
(
pi,j − αProjCi,j

(pi,j/α)
)
.

Thus, the details of Algorithm 3 to solve (M)d are as follow :

Algorithm 3. (PD) iterations for (M)d

Initialization: Let l = 0, choose α, β > 0 such that αβ∥Λh∥2 < 1. Choose ρ0,Φ0

and p0 = p̄0 = p0.

Primal step:

(ρl+1
i,j ,Φl+1

i,j ) =

(
max

(
0,min(1, ρli,j − βp̄li,j)

)
,max

(
0, 1− 1

|Φl
i,j − β∇hp̄li,j |

)(
Φl

i,j − β∇hp̄
l
i,j

))
.

(3.20)

Dual step:

vl+1 = pl + αρl+1 − α divh(Φ
l+1).

pl+1
i,j = vl+1

i,j − αProjCi,j
(vl+1

i,j /α), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
(3.21)

Extragradient:

p̄l+1 = 2pl+1 − pl.

It was shown in8 that when θ = 1 and αβ∥Λh∥2 < 1, the sequence {(ρl,Φl)}
converges to an optimal solution of (M)d. So in practice, we choose α > 0 and

we take β = 1/(αK2), where K is an upper bound of ∥Λh∥. More precisely, K =√
∥∇h∥2 + ∥idX∥2 ≡ ∥Λh∥. The algorithm was implemented in Matlab and all the

numerical examples below were executed on a 2,6 GHz CPU running macOs High

Sierra system.
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Remark 3.1 (Non-homogeneous Neuman boundary condition : non null

η). In is not difficult to see that in the case of non null η, one can handle this

case by considering η as a source term on the boundary on ΓN . To avoid numerical

computation for the correction we propose to handle the condition

−τ div(Φ) = ρk+1/2 − ρ in D′(Ω) and Φ · ν = η on ΓN .

as

−τ div(Φ) = ρk+1/2 + τ η − ρ in D′(Ω \ ΓD).

In other words, at each iteration we take ρl + τ η instead of ρl in the Algorithms

1-2.

4. Numerical simulations

In this section we present several examples to illustrate our approach a. We first

examine the scenario of evacuation of a population ρ0 from a the domain Ω ⊂ R2

via an exit ΓD with different velocities. In the last two examples we compare our

approach to the one in Refs. 32, 33, the configuration in the first one is similar to the

previous ones, i.e., the crowed is initially located in a part of the room Ω and try to

escape through the doors, while in the second example the domain Ω is constituted

by two rooms connected by a ”bridge”. In all these examples, the velocity field V

derives from a potential φ that is considered as the distance function to the door

ΓD and is computed by solving the eikonal equation{
∥∇φ∥ = f(x)

φ|ΓD
= 0,

(4.1)

using the primal-dual method proposed in 20 (see also 22), where f ≥ 0 is a contin-

uous function that will be precised for each example. All the tests of this section are

performed with a mesh size h = 0.01 and a timestep τ = 0.004. We can easily check

that this choice of parameters satisfies the CFL condition ∥V ∥∞ τ
h ≤ 1

2 . Moreover,

the corresponding velocities are displayed in red.

4.1. One room evacuation

In this first example (c.f. Figure-2), the initial density ρ0 is given by ρ0(x) = 1S1
(x)+

1S2(x) with S1 = [0, 1
2 ] × [0, 1

3 ] and S2 = [0, 1
2 ] × [ 23 , 1]. The exit is given by ΓD =

{1} × [0.4, 0.6] and f ≡ 1.

aDemonstration videos are available at https://github.com/enhamza/crowd-motion

https://github.com/enhamza/crowd-motion
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Fig. 2. The crowed density ρ computed at 6 different timesteps with T = 2 and f ≡ 1.

In the second example (c.f. Figure-3), the initial density is the same as in

the previous example and ΓD = ({1} × [0, 0.4]) ∪ ({1} × [0.9, 1]) and f(x) =

e−3×((x− 1
2 )

2+(y− 1
2 )

2).

Fig. 3. The crowed density ρ computed at 6 different timesteps with T = 3 and f(x) =

e−3×((x− 1
2
)2+(y− 1

2
)2).

In this example, the function f has a bump in the middle of the domain, and we

can observe in Figure-3 that the population is avoiding this region while heading

the doors.

In the third example (c.f. Figure-4), the initial condition for the density is

ρ0(x) = 1S1
(x) with S1 = [0, 1

2 ]×[0, 1] and ΓD = ({1} × [0.2, 0.3])∪({1} × [0.7, 0.8])

and f(x) = | cos(3x + 5y)| + 0.2. The source term is located on the entry of the

domain at ΓS = {0} × [0.3, 0.6].

In this example one sees that the vector filed of spontaneous velocity has small
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Fig. 4. The crowed density ρ computed at 6 different timesteps with T = 3 and f(x) = | cos(3x+

5y)|+ 0.2.

values in successive (periodic) regions. This produce in turns successive congestion

zones. Moreover, the system reaches its equilibrium after t = 2. One can notice that

no variation in the density is observed as the number of persons leaving the room

is equal to the number of person entering the room.

4.2. Homogeneous case vs quadratic case

As we pointed out in Subsection-2.3, in the case where F (x, ξ) = |ξ|, our model is

connected to the gradient flow in the Wasserstein space equipped withW1. Whereas

the case F (x, ξ) = 1
2 |ξ|

2 can be related to the gradient flow in the Wasserstein space

equipped with theW2 distance (c.f. Refs. 32, 33), where decongestion is performed

using the Laplace operator as we discussed in Remark-2.6. The solution of the

continuity equation is computed first (prediction step), then it is projected onto

the set of admissible densities with respect toW2-Wasserstein distance (correction

step). Using our approach, this can be simply solved by changing the functional Ah

to Ah(ρ,Φ) = I[0,1](ρ) + 1/2∥Φ∥22 and modifying formula (3.18) using the fact that

Proxσ
2 ∥.∥2

2
(Φ) =

1

1 + σ
Φ. (4.2)

To observe differences between the two methods, we consider two examples. In the

first one (c.f. Figure-5), the initial density is ρ0(x) = 1S1(x) with

S1 = [0,
1

2
]× [0, 1] and ΓD = ({1} × [0, 0.4]) ∪ ({1} × [0.9, 1]) .

.
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Fig. 5. The distribution of crowd at equivalent timesteps with T = 2. Top row: result using our

approach. Bottom row: result using the Laplacian.
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Fig. 6. Top: Variation of the average density over time for the two models at the exist doors.

Bottom: Variation of ||ρ1 − ρ2||L∞(Ω) and ||ρ1 − ρ2||L2(Ω) as a function of time for the two rooms
case. ρ1 is the solution obtained by our approach and ρ2 the solution obtained by the Laplacian

model.

Now, we consider a domain Ω = [0, 1]2 = Ωl ∪Ωr composed of two rooms linked

by a bridge in the spirit of 31, where Ωl = [0, 0.4] × [0, 1] and Ωr = [0.6, 1] × [0, 1].

The initial density ρ0 is located at the left room and is given by ρ0(x) = 1S(x) with

S = [0, 0.4] × [0, 1] . The exit is given by the two end points (1, 0) and (1, 1), that

is ΓD = {(1, 0), (1, 1)}.
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Fig. 7. The distribution of the crowd over the domain at equivalent timesteps. Top row: result

using our approach. Bottom row: result using the Laplacian.
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Fig. 8. Top: Variation of the average density over time for the two models at the exist doors.
Bottom: Variation of ||ρ1 − ρ2||L∞(Ω) and ||ρ1 − ρ2||L2(Ω) as a function of time for the two rooms

case. ρ1 is the solution obtained by our approach and ρ2 the solution obtained by the Laplacian
model.

Figures-5-7 provide a comparison between our method to and one using the

Laplace operator in equivalent timesteps. Overall, both models behave similarly

except that our model seems to perform faster evacuation. In most of the timesteps

examples, it is difficult to visualize differences in of the evolution of the crowd only

through the figures. Yet, we can observe this by measuring the L∞ and L2 norms of

the obtained solutions as well as the variation of the average density over time for

the two models at the exist doors. Thanks to Figures-6-8, one can clearly notice that

our model is faster than the Laplacian model in achieving population evacuation,

as the blue curve (our model) remains under the red curve (Laplacian model) over

all the time period.

4.3. Evacuation with path obstacles

In this section, we analyse the evacuation process in the presence of in-domain

obstacles. At the microscopic level, it was shown in38 that pedestrians might be
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blocked from exiting the room in case where no obstacle is placed in front of the

exist. The reason is that pedestrians start to push each other once near to the exist

blocking the continuation of the evacuation process. The authors38 have concluded

that placing an obstacle just in front of the exist regulates the evacuation and

avoids blocking of pedestrians. To observe the effect of placing an obstacle in front

in the exist on the fluidity and speed of the evacuation in the macroscopic case,

we consider the following example in Ω = [0, 1]2 where the obstacle is placed at

the region [0.8, 0.9] × [0.2, 0.8]. The initial density ρ0 is located at the left room

and is given by ρ0(x) = 1S(x) with S = [0, 0.5] × [0, 1] . The exit is given by

ΓD = 1× [0.4, 0.6].

Fig. 9. The distribution of the crowd over the domain at equivalent timesteps. Top: result in the

presence of an obstacle. Bottom: result without the obstacle.

As shown in Figure-9, we can notice that after t = 1.4, the room is completely

evacuated in absence of the obstacle in front of the exist. However, when considering

obstacle we can notice that the evacuation is partial and some pedestrian are stuck

in the room. In fact, placing an obstacle slowed down the evacuation.

In conclusion, this series of examples shows that the behavior of the crowd and

the evacuation time can be influenced by several factors such as the velocity field,

the position of the exits as well as the geometry and positions of possible obstacles.

Typically, the presented in Figure-9, adding an obstacle in the macroscopic case

just in front of the door for this type of velocity field and for the chosen initial

condition increased the evacuation time.

Appendix A. On the discrete operators

cm In this section, we recall some details concerning the discrete divergence and

gradient operators that were used in Section-3. First, let us recall that the space

X = Rm×n is equipped with a scalar product and an associated norm as follows:

⟨u, v⟩ = h2
m∑
i=1

n∑
j=1

ui,jvi,j and ∥u∥ =
√
⟨u, u⟩,
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where h is a given mesh size. Following the definition of the discrete divergence

operator given in (3.1), the discrete gradient ∇h : X −→ Y = R(m+1)×n×Rm×(n+1)

is given by (∇hu)i,j =
(
(∇hu)

1
i,j , (∇hu)

2
i,j

)
, where

(∇hu)
1
i,j = −t D1

pu(i, j), if ((m+
1

2
)h, jh) ∈ ΓD,

(∇hu)
1
i,j = −t D1

mu(i, j), if ((m+
1

2
)h, jh) ∈ ΓN ,

(∇hu)
2
i,j = −t D2u(i, j).

(A.1)

and the matrices D1
P , D

2
m, D2 are given by

D1
p =


0 1/h 0 · · · 0
0 −1/h 1/h 0 · · · 0
0 0 −1/h 1/h 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 0 −1/h 1/h



D1
m =


0 1/h 0 · · · 0
0 −1/h 1/h 0 · · · 0
0 0 −1/h 1/h 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 0 −1/h 0


and

D2 =


0 1/h 0 · · · 0
0 −1/h 1/h 0 · · · 0
0 0 −1/h 1/h 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 0 −1/h 0

.

This being said, we check easily that −divh and ∇h are in duality. Moreover,

we recall the following

Proposition A1. (Refs. 7, 8) Under the above-mentioned definitions and nota-

tions, one has that

• The adjoint operator of ∇h is ∇∗
h = −divh .

• Its norm satisfies: ∥∇h∥2 = ∥ divh ∥2 ≤ 8/h2.

Appendix B. Discretization of the eikonal equation:

For a self-contained presentation, let us recall our main approach to compute the

velocity field V by solving the eikonal equation (2.7). As pointed out in22 (see also

Ref. 20), the solution D of (2.7) can be obtained by solving

max
u∈W 1,∞(Ω)

{∫
Ω

udx : |∇u| ≤ f, u = 0 on ΓD

}
(B.1)

which can be written, at a discrete level, as

min
u∈X

Ah(u) + Bh(∇hu), (B.2)
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where

Ah(u) =

{
−h2

∑m
i=1

∑n
j=1 ui,j if ui,j = 0 ∀(i, j) ∈ Dd

+∞ otherwise
, and Bh = IB(0,f),

(B.3)

where Dd = {(i, j) : (ih, jh) ∈ ΓD} the indexes whose spatial positions belong to

ΓD and B(0, f) is the unit ball of radius f . Then we apply Algorithm-2 with the

functionals Ah and Bh above.
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