Exercice 1. Soient $C_1, C_2 \subset \mathbb{R}^n$ deux ensembles convexes. Montrer que les ensembles $C_1 \cap C_2, C_1 + C_2, C_1 \times C_2$ sont convexes.

Exercice 2. Montrer que les ensembles suivants sont convexes:

- (1) $L = \{x + td : t \in \mathbb{R}\}$ avec $x, d \in \mathbb{R}^n$ et $d \neq 0$.
- (2) Les boules ouvertes et fermées: $B(a,r), B_f(a,r)$ avec $a \in \mathbb{R}^n, r > 0$.
- (3) $H = \{x \in \mathbb{R}^n : a^T x = b\}, a \in \mathbb{R}^n, b \in \mathbb{R}.$
- (4) $H^- = \{ x \in \mathbb{R}^n : a^T x \le b \}, a \in \mathbb{R}^n, b \in \mathbb{R}.$

Exercice 3. (1) Montrer que \mathcal{S}^n_+ et \mathcal{S}^n_{++} sont convexes. Montrer que \mathcal{S}^n_+ est un cône, i.e., pour tout $\lambda \geq 0$ et $A \in \mathcal{S}^n_+$, on a $\lambda A \in \mathcal{S}^n_+$.

(2) Montrer que \mathcal{S}^n_+ est fermé. Qu'elle est l'adhérence de \mathcal{S}^n_{++} ?

Exercice 4. Soient $S, T \subset \mathbb{R}^n$. Montrer que:

- (1) Si $S \subset T$ alors $Conv(S) \subset Conv(T)$.
- (2) $\operatorname{Conv}(S + T) = \operatorname{Conv}(S) + \operatorname{Conv}(T)$
- (3) Conv(Conv(S)) = Conv(S).
- (4) Montrer que $Conv(S \times T) = Conv(S) \times Conv(T)$.

Exercice 5. Soit $C \subset \mathbb{R}^n$ vérifiant la propriété dite de demi-somme:

$$x, y \in C \Rightarrow \frac{x+y}{2} \in C.$$

C est-il convexe ? Que dire si C est supposé être fermé ?.

Exercice 6. Soit $C \subset \mathbb{R}^n$ un convexe non vide. On définit le cône normal de C en x par

$$N_C(x) = \begin{cases} \{z \in \mathbb{R}^n : \langle z, y - x \rangle \le 0 \text{ pour tout } y \in C\} \text{ si } x \in C \\ \emptyset, \text{ sinon.} \end{cases}$$

Montrer que $N_C(x)$ est un cône convexe fermé.

Exercice 7. Soit $K \subset \mathbb{R}^n$ un convexe borné et symétrique tel que $0 \in \text{int}(K)$. Montrer que

$$g_K(x) = \inf\{\lambda > 0 : \frac{x}{\lambda} \in K\}$$

est une norme.

Exercice 8. Montrer que

$$\{x \in \mathbb{R}^2 : |x_1| + |x_2| \le 1\} := B_{\|\cdot\|_1}(0,1) = \operatorname{Conv}(e_1, -e_1, e_2, -e_2),$$

 e_1 et e_2 étant les vecteurs de la base canonique de R^2 . Quels sont les points extrémaux de $B_{\|\cdot\|_1}(0,1)$.