
Tutorial : Optimization

17 septembre 2024

Exercice 1 Basic Differential calculus

Compute the gradients of :

a. f1(x) = uTx.

b. f2(x) = xTAx .

c. f3(x) = ∥Ax− b∥22 .

d. f4(x) = ∥x∥2 .

Exercice 2 Fundamentals of convexity

This exercise proves and illustrates some results seen in the course.

a. Let f and g be two convex functions. Show that m(x) = max(f(x), g(x)) is convex.

b. Show that f1(x) = max(x2 − 1, 0) is convex.

c. Let f be a convex function and g be a convex, non-decreasing function. Show that c(x) = g(f(x))
is convex.

d. Show that f2(x) = exp(x2) is convex. What about f3(x) = exp(−x2) ?

e. Consider the function f = Rn → R ∪ {∞} defined by

f(x) =

{
− ln(1− ∥x∥) if ∥x∥ < 1

+∞ otherise.

Show that f is convex.

f. Justify why the 1-norm, the 2 norm, and the squared 2-norm are convex.

Exercice 3 Strict and strong convexity

A function f : Rn → R is said

• strictly convex if for any x ̸= y ∈ Rn and any α ∈]0, 1[

f(αx+ (1− α)y) < αf(x) + (1− α)f(y)

• strongly convex if there exists β > 0 such that f − β
2 ∥ · ∥

2
2 is convex.
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a. For a strictly convex function f , show that the problem{
min f(x)
x ∈ C

where C is a convex set admits at most one solution.

b. Show that a strongly convex function is also strictly convex.
Hint : use the identity ∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

c. Let f be a twice differentiable function. Show that f is strongly convex if and only if there exists
β > 0 such that the eigenvalues of ∇2f(x) are larger than β for all x.

Exercice 4 Optimality conditions

Let f : Rn → R be a twice differentiable function and x̄ ∈ Rn. We suppose that f admits a local
minimum at x̄ that is f(x) ≥ f(x̄) for all x in a neighborhood1 of x̄.

a. For any direction u ∈ Rn, we define the R → R function q(t) = f(x̄+ tu). Compute q′(t).

b. By using the first order Taylor expansion of q at 0, show that ∇f(x̄) = 0.

c. Compute q′′(t). By using the second order Taylor expansion of q at 0, show that ∇2f(x̄) is positive
semi-definite.

Exercice 5 Descent lemma

A function f : Rn → R is said to be L-smooth if it is differentiable and its gradient ∇f is L-Lipchitz
continuous, that is

∀x, y ∈ Rn,  ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

The goal of the exercise is to prove that if f : Rn → R is L-smooth, then for all x, y ∈ Rn,

f(x) ≤ f(y) + (x− y)T∇f(y) +
L

2
∥x− y∥2

a. Starting from fundamental theorem of calculus stating that for all x, y ∈ Rn,

f(x)− f(y) =

∫ 1

0
(x− y)T∇f(y + t(x− y))dt

prove the descent lemma.

b. Give a function for which the inequality is tight and one for which it is not.

Exercice 6 Smooth functions

Consider the constant stepsize gradient algorithm xk+1 = xk − γ∇f(xk) on an L-smooth function f
with some minimizer (i.e. some x⋆ such that f(x) ≥ f(x⋆) for all x).

a. Use the descent lemma to prove convergence of the sequence (f(xk)) when γ ≤ 2/L.

b. Does the sequence (xk) converge ? To what ?

1Formally, one would write ∀x ∈ Rn such that ∥x− x̄∥ ≤ ε for ε > 0 and some norm ∥ · ∥.


