Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe différentiable. On définit, pour x > 0

$$F(x) = \frac{1}{x} \int_0^x f(t)dt.$$

Montrer que F est convexe.

Exercice 2. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe bornée supérieurement. Montrer que f est constante.

Exercice 3. Soit $f: C \to \mathbb{R}$ avec $C \subset \mathbb{R}$ convexe. Montrer que f est quasi-convexe ssi

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}, \ \forall x, y \in C, \lambda \in [0, 1].$$

Exercice 4. Soit $C \subset \mathbb{R}^n$ un convexe et $\mu > 0$. On rappelle qu'une fonction $f : C \to \mathbb{R}$ est dite μ -fortement convexe (ou fortement convexe de module μ) si $g(x) := f(x) - \frac{\mu}{2} ||x||^2$ est convexe sur C.

(1) Montrer que f est μ -fortement convexe sur C ssi

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) - \frac{\mu}{2}\lambda(1 - \lambda)\|x - y\|^2, \ \forall x, y \in C \text{ et } \lambda \in [0, 1].$$

- (2) Montrer si f est fortement convexe alors f est strictement convexe.
- (3) Supposons que f est C^1 . Montre que f est μ -fortement convexe sur C ssi

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||x - y||^2, \ \forall x, y \in C.$$

(4) Supposons que f est C^1 . Montre que f est μ -fortement convexe sur C ssi

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||^2, \ \forall x, y \in C.$$

(5) Supposons que f est C^2 . Montre que f est μ -fortement convexe sur C ssi

$$\nabla^2 f(x) \succeq \mu I, \ \forall x \in C.$$

- (6) Soit h = f + g avec f fortement convexe et g convexe. Montrer que h est fortement convexe.
- (7) Montrer que $f(x) = \sqrt{1 + ||x||^2}$ est strictement convexe mais pas fortement convexe.
- (8) Soit $f(x) = x^T A x + 2b^T x + c$ avec $A \in \mathcal{S}^n, b \in \mathbb{R}^n$ et $c \in \mathbb{R}$. Montrer que f est μ -fortement convexe ssi $A \in \mathcal{S}^n_{++}$. Dans ce cas le module de forte convexité est $\mu = 2\lambda_{\min}(A)$.

Exercice 5. On rappelle qu'une application $F: \mathbb{R}^n \to \mathbb{R}^n$ est monotone si

$$\langle F(x) - F(y), x - y \rangle \ge 0, \ \forall x, y \in \mathbb{R}^n.$$

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe. Montrer que ∇f est monotone. Peut-on dire que toute application monotone est le gradient d'une fonction convexe ?

Exercice 6. Montrer qu'une fonction $f:C\to\mathbb{R}$ est convexe, avec C convexe, si et seulement si pour tout $x,y\in C$ et $\alpha\geq 0$ tel que $y+\alpha(y-x)\in C$ on a

$$f(y + \alpha(y - x)) \ge f(y) + \alpha(f(y) - f(x)). \tag{1}$$

Exercice 7. Soient $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n \setminus \{x\}$ et $d \in \mathbb{R}$. Montrer que $f(x) = \frac{\|Ax + b\|^2}{c^T x + d}$ est convexe sur $C = \{x : c^T x + d > 0\}$.